Nuprl Lemma : s-comp-nc-0-new
∀[I:fset(ℕ)]. (s ⋅ (new-name(I)0) = 1 ∈ I ⟶ I)
Proof
Definitions occuring in Statement : 
nc-0: (i0), 
nc-s: s, 
new-name: new-name(I), 
add-name: I+i, 
nh-comp: g ⋅ f, 
nh-id: 1, 
names-hom: I ⟶ J, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
true: True, 
squash: ↓T, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
names-hom_wf, 
new-name_wf, 
new-name-property, 
nh-id_wf, 
equal_wf, 
s-comp-nc-0, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
hypothesis, 
because_Cache, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
natural_numberEquality, 
lambdaEquality_alt, 
imageElimination, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  (s  \mcdot{}  (new-name(I)0)  =  1)
Date html generated:
2020_05_20-PM-01_36_45
Last ObjectModification:
2020_01_06-AM-11_11_54
Theory : cubical!type!theory
Home
Index