Nuprl Lemma : composition-term_wf
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[u:{Gamma, phi.𝕀 ⊢ _:A}].
∀[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}].
  (comp cA [phi ⊢→ u] a0 ∈ {Gamma ⊢ _:(A)[1(𝕀)][phi |⟶ (u)[1(𝕀)]]})
Proof
Definitions occuring in Statement : 
composition-term: comp cA [phi ⊢→ u] a0, 
composition-op: Gamma ⊢ CompOp(A), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
context-subset: Gamma, phi, 
face-type: 𝔽, 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
csm-id-adjoin: [u], 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
csm-id-adjoin: [u], 
csm-id: 1(X), 
guard: {T}, 
composition-term: comp cA [phi ⊢→ u] a0, 
uimplies: b supposing a, 
interval-presheaf: 𝕀, 
names: names(I), 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
cubical-type-at: A(a), 
pi1: fst(t), 
face-type: 𝔽, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
context-map: <rho>, 
subset-iota: iota, 
csm-comp: G o F, 
compose: f o g, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
interval-0: 0(𝕀), 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
interval-type: 𝕀, 
nc-0: (i0), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
empty-fset: {}, 
nil: [], 
dM0: 0, 
lattice-0: 0, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
nequal: a ≠ b ∈ T , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0), 
DeMorgan-algebra: DeMorganAlgebra, 
cubical-type-ap-morph: (u a f), 
pi2: snd(t), 
cube-set-restriction: f(s), 
dM-lift: dM-lift(I;J;f), 
free-dma-lift: free-dma-lift(T;eq;dm;eq2;f), 
free-DeMorgan-algebra-property, 
free-dist-lattice-property, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
cc-adjoin-cube: (v;u), 
csm-ap: (s)x, 
csm-adjoin: (s;u), 
context-subset: Gamma, phi, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
name-morph-satisfies: (psi f) = 1, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
cube-context-adjoin: X.A, 
composition-op: Gamma ⊢ CompOp(A), 
cubical-term: {X ⊢ _:A}, 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u), 
composition-uniformity: composition-uniformity(Gamma;A;comp), 
nc-1: (i1), 
interval-1: 1(𝕀), 
nc-e': g,i=j, 
ge: i ≥ j , 
decidable: Dec(P), 
dma-hom: dma-hom(dma1;dma2), 
names-hom: I ⟶ J, 
partial-term-1: u[1], 
cubical-term-at: u(a), 
cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1), 
csm-ap-term: (t)s, 
cubical-type: {X ⊢ _}, 
csm-ap-type: (AF)s
Lemmas referenced : 
composition-op_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
cubical-type-cumulativity2, 
cubical-type_wf, 
istype-cubical-term, 
face-type_wf, 
cubical_set_wf, 
context-subset-adjoin-subtype, 
composition-type-lemma5, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
csm-id-adjoin_wf-interval-0, 
csm-ap-term_wf, 
context-subset_wf, 
thin-context-subset-adjoin, 
cc-adjoin-cube_wf, 
add-name_wf, 
new-name_wf, 
cube-set-restriction_wf, 
nc-s_wf, 
f-subset-add-name, 
interval-type-at, 
I_cube_pair_redex_lemma, 
dM_inc_wf, 
trivial-member-add-name1, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
I_cube_wf, 
fset_wf, 
cubical-subset_wf, 
face-presheaf_wf2, 
cubical-term-at_wf, 
subtype_rel_self, 
context-map-lemma2, 
csm-ap-type-at, 
cubical-type-at_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cube-set-restriction-comp, 
nc-0_wf, 
iff_weakening_equal, 
cube-set-restriction-when-id, 
nh-comp_wf, 
s-comp-nc-0-new, 
csm-id-adjoin-ap, 
cc-adjoin-cube-restriction, 
trivial-equal, 
dM0_wf, 
interval-type-ap-inc, 
interval-type-at-is-point, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
eq_int_eq_true, 
btrue_wf, 
not_assert_elim, 
btrue_neq_bfalse, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-cubical-type-at, 
cubical-subset-I_cube, 
names-hom_wf, 
cube-set-restriction-id, 
s-comp-nc-0, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dM-lift_wf2, 
dM0-sq-empty, 
dM-lift-0, 
assert_elim, 
bnot_wf, 
bfalse_wf, 
interval-type-ap-morph, 
dM-lift-inc, 
cubical-subset-I_cube-member, 
cubical-type-ap-morph_wf, 
subtype_rel-equal, 
cubical-term-at-morph, 
csm-cubical-type-ap-morph, 
face_lattice_wf, 
lattice-1_wf, 
fl-morph_wf, 
face-type-ap-morph, 
thin-context-subset, 
subset-I_cube, 
context-subset-is-subset, 
csm-ap-term-at, 
arrow_pair_lemma, 
s-comp-if-lemma1, 
nh-comp-assoc, 
nh-id-right, 
nh-comp-sq, 
cubical-path-condition_wf, 
csm-id-adjoin_wf-interval-1, 
composition-type-lemma2, 
nc-1_wf, 
nh-id_wf, 
nh-id-left, 
s-comp-nc-1, 
dM1-sq-singleton-empty, 
dM-lift-1, 
s-comp-nc-1-new, 
dM1_wf, 
csm-ap_wf, 
csm-ap-restriction, 
nc-e'_wf, 
nc-e'-lemma3, 
face-term-at-restriction, 
composition-type-lemma3, 
cubical-path-0-ap-morph, 
interval-presheaf_wf, 
small_cubical_set_subtype, 
nat_properties, 
decidable__le, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
istype-le, 
dM-lift_wf, 
eq_int_eq_true_intro, 
names_wf, 
composition-type-lemma4, 
cubical-term-equal, 
partial-term-1_wf, 
subset-cubical-term, 
csm-face-type, 
cc-fst_wf_interval, 
sub_cubical_set_transitivity, 
sub_cubical_set_self, 
context-adjoin-subset1, 
name-morph-satisfies_wf, 
name-morph-1-satisfies, 
cubical-type-ap-morph-id, 
csm-id-adjoin_wf, 
interval-1_wf, 
context-subset-term-subtype, 
free-DeMorgan-algebra-property, 
free-dist-lattice-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
universeIsType, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
lambdaFormation_alt, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
dependent_functionElimination, 
independent_isectElimination, 
Error :memTop, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
setElimination, 
rename, 
intEquality, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
universeEquality, 
productElimination, 
independent_functionElimination, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
voidElimination, 
approximateComputation, 
int_eqEquality, 
productEquality, 
isectEquality, 
independent_pairFormation, 
productIsType, 
applyLambdaEquality, 
dependent_pairEquality_alt, 
functionExtensionality, 
functionEquality, 
functionIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].
\mforall{}[u:\{Gamma,  phi.\mBbbI{}  \mvdash{}  \_:A\}].  \mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].
    (comp  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0  \mmember{}  \{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[1(\mBbbI{})]]\})
Date html generated:
2020_05_20-PM-04_11_53
Last ObjectModification:
2020_04_21-AM-00_49_38
Theory : cubical!type!theory
Home
Index