Nuprl Lemma : nc-e'-lemma3
∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[J:fset(ℕ)]. ∀[g:J ⟶ I]. ∀[j:{j:ℕ| ¬j ∈ J} ].  (s ⋅ g,i=j = g ⋅ s ∈ J+j ⟶ I)
Proof
Definitions occuring in Statement : 
nc-e': g,i=j, 
nc-s: s, 
add-name: I+i, 
nh-comp: g ⋅ f, 
names-hom: I ⟶ J, 
fset-member: a ∈ s, 
fset: fset(T), 
int-deq: IntDeq, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
set: {x:A| B[x]} , 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
names-hom: I ⟶ J, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
nat: ℕ, 
so_apply: x[s], 
nc-s: s, 
nh-comp: g ⋅ f, 
nc-e': g,i=j, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g), 
compose: f o g, 
dM: dM(I), 
dM-lift: dM-lift(I;J;f), 
squash: ↓T, 
DeMorgan-algebra: DeMorganAlgebra, 
and: P ∧ Q, 
guard: {T}, 
names: names(I), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
dma-hom: dma-hom(dma1;dma2), 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
sq_stable: SqStable(P), 
dM_inc: <x>, 
dminc: <i>, 
free-dl-inc: free-dl-inc(x), 
fset-singleton: {x}, 
cons: [a / b]
Lemmas referenced : 
names_wf, 
set_wf, 
nat_wf, 
not_wf, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
names-hom_wf, 
equal_wf, 
squash_wf, 
true_wf, 
lattice-point_wf, 
dM_wf, 
add-name_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dM-lift-inc, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
dM_inc_wf, 
trivial-member-add-name1, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
not-added-name, 
dM-point-subtype, 
f-subset-add-name, 
names-subtype, 
dM-lift_wf, 
dma-hom_wf, 
all_wf, 
iff_weakening_equal, 
int_subtype_base, 
sq_stable__fset-member, 
dM-lift-unique-fun, 
dM-subobject
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
functionExtensionality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
intEquality, 
independent_isectElimination, 
because_Cache, 
natural_numberEquality, 
isect_memberEquality, 
axiomEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
instantiate, 
productEquality, 
cumulativity, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_functionElimination, 
dependent_set_memberEquality, 
dependent_pairFormation, 
promote_hyp, 
independent_functionElimination, 
voidElimination, 
setEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[g:J  {}\mrightarrow{}  I].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].
    (s  \mcdot{}  g,i=j  =  g  \mcdot{}  s)
Date html generated:
2017_10_05-AM-01_04_25
Last ObjectModification:
2017_07_28-AM-09_26_59
Theory : cubical!type!theory
Home
Index