Nuprl Lemma : dM-lift-inc
∀[I,J:fset(ℕ)]. ∀[f:I ⟶ J]. ∀[x:names(J)]. ((dM-lift(I;J;f) <x>) = (f x) ∈ Point(dM(I)))
Proof
Definitions occuring in Statement :
dM-lift: dM-lift(I;J;f)
,
names-hom: I ⟶ J
,
dM_inc: <x>
,
dM: dM(I)
,
names: names(I)
,
lattice-point: Point(l)
,
fset: fset(T)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
DeMorgan-algebra: DeMorganAlgebra
,
prop: ℙ
,
and: P ∧ Q
,
guard: {T}
,
uimplies: b supposing a
,
so_apply: x[s]
,
dma-hom: dma-hom(dma1;dma2)
,
bounded-lattice-hom: Hom(l1;l2)
,
lattice-hom: Hom(l1;l2)
,
names-hom: I ⟶ J
,
implies: P
⇒ Q
,
squash: ↓T
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
dM-lift_wf,
set_wf,
dma-hom_wf,
dM_wf,
all_wf,
names_wf,
equal_wf,
lattice-point_wf,
subtype_rel_set,
DeMorgan-algebra-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
DeMorgan-algebra-structure-subtype,
subtype_rel_transitivity,
bounded-lattice-structure_wf,
bounded-lattice-axioms_wf,
uall_wf,
lattice-meet_wf,
lattice-join_wf,
DeMorgan-algebra-axioms_wf,
dM_inc_wf,
squash_wf,
true_wf,
subtype_rel_self,
iff_weakening_equal,
names-hom_wf,
fset_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
dependent_functionElimination,
sqequalRule,
lambdaEquality,
applyEquality,
instantiate,
productEquality,
cumulativity,
because_Cache,
independent_isectElimination,
setElimination,
rename,
lambdaFormation,
productElimination,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality,
equalityUniverse,
levelHypothesis,
natural_numberEquality,
imageMemberEquality,
baseClosed,
independent_functionElimination,
isect_memberEquality,
axiomEquality
Latex:
\mforall{}[I,J:fset(\mBbbN{})]. \mforall{}[f:I {}\mrightarrow{} J]. \mforall{}[x:names(J)]. ((dM-lift(I;J;f) <x>) = (f x))
Date html generated:
2018_05_23-AM-08_28_22
Last ObjectModification:
2018_05_20-PM-05_36_12
Theory : cubical!type!theory
Home
Index