Nuprl Lemma : int-deq_wf
IntDeq ∈ EqDecider(ℤ)
Proof
Definitions occuring in Statement : 
int-deq: IntDeq
, 
deq: EqDecider(T)
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
deq: EqDecider(T)
, 
int-deq: IntDeq
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
eq_int_wf, 
equal_wf, 
assert_of_eq_int, 
assert_wf, 
all_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
dependent_set_memberEquality, 
lambdaEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
lambdaFormation, 
independent_pairFormation, 
because_Cache, 
addLevel, 
allFunctionality, 
productElimination, 
impliesFunctionality, 
independent_isectElimination, 
applyEquality
Latex:
IntDeq  \mmember{}  EqDecider(\mBbbZ{})
Date html generated:
2016_05_14-AM-06_06_54
Last ObjectModification:
2015_12_26-AM-11_46_28
Theory : equality!deciders
Home
Index