Nuprl Lemma : int-deq_wf

IntDeq ∈ EqDecider(ℤ)


Proof




Definitions occuring in Statement :  int-deq: IntDeq deq: EqDecider(T) member: t ∈ T int:
Definitions unfolded in proof :  deq: EqDecider(T) int-deq: IntDeq member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: rev_implies:  Q uiff: uiff(P;Q) uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  eq_int_wf equal_wf assert_of_eq_int assert_wf all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule dependent_set_memberEquality lambdaEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality lambdaFormation independent_pairFormation because_Cache addLevel allFunctionality productElimination impliesFunctionality independent_isectElimination applyEquality

Latex:
IntDeq  \mmember{}  EqDecider(\mBbbZ{})



Date html generated: 2016_05_14-AM-06_06_54
Last ObjectModification: 2015_12_26-AM-11_46_28

Theory : equality!deciders


Home Index