Nuprl Lemma : dM-subobject
∀[I,J:fset(ℕ)].  λv.v ∈ dma-hom(dM(I);dM(J)) supposing I ⊆ J
Proof
Definitions occuring in Statement : 
dM: dM(I), 
dma-hom: dma-hom(dma1;dma2), 
f-subset: xs ⊆ ys, 
fset: fset(T), 
int-deq: IntDeq, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
lambda: λx.A[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
dma-hom: dma-hom(dma1;dma2), 
subtype_rel: A ⊆r B, 
DeMorgan-algebra: DeMorganAlgebra, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
prop: ℙ, 
nat: ℕ, 
and: P ∧ Q, 
cand: A c∧ B, 
dM: dM(I), 
lattice-meet: a ∧ b, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
all: ∀x:A. B[x], 
top: Top, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
btrue: tt, 
union-deq: union-deq(A;B;a;b), 
lattice-join: a ∨ b, 
lattice-0: 0, 
record-select: r.x, 
record-update: r[x := v], 
empty-fset: {}, 
nil: [], 
it: ⋅, 
lattice-1: 1, 
fset-singleton: {x}, 
cons: [a / b], 
dma-neg: ¬(x), 
dm-neg: ¬(x), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-meet: /\(s), 
lattice-fset-join: \/(s), 
opposite-lattice: opposite-lattice(L), 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
lattice-structure_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
uall_wf, 
equal_wf, 
dma-neg_wf, 
DeMorgan-algebra_wf, 
f-subset_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
fset_wf, 
dM-point-subtype, 
rec_select_update_lemma, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-0_wf, 
DeMorgan-algebra-structure_wf, 
bounded-lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-axioms_wf, 
DeMorgan-algebra-axioms_wf, 
lattice-1_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
because_Cache, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
natural_numberEquality, 
isect_memberEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
productElimination, 
independent_pairEquality, 
productEquality, 
functionExtensionality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[I,J:fset(\mBbbN{})].    \mlambda{}v.v  \mmember{}  dma-hom(dM(I);dM(J))  supposing  I  \msubseteq{}  J
Date html generated:
2017_10_05-AM-01_00_48
Last ObjectModification:
2017_07_28-AM-09_25_53
Theory : cubical!type!theory
Home
Index