Nuprl Lemma : interval-type-ap-inc

[I,J:fset(ℕ)]. ∀[f:I ⟶ J]. ∀[x:names(J)]. ∀[rho:Top].  ((<x> rho f) (f x) ∈ Point(dM(I)))


Proof




Definitions occuring in Statement :  interval-type: 𝕀 cubical-type-ap-morph: (u f) names-hom: I ⟶ J dM_inc: <x> dM: dM(I) names: names(I) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] top: Top apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top squash: T prop: subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] names-hom: I ⟶ J true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  interval-type-ap-morph equal_wf squash_wf true_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift-inc iff_weakening_equal top_wf names_wf names-hom_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesisEquality hypothesis applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality instantiate productEquality independent_isectElimination cumulativity because_Cache natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].  \mforall{}[x:names(J)].  \mforall{}[rho:Top].    ((<x>  rho  f)  =  (f  x))



Date html generated: 2017_10_05-AM-01_32_32
Last ObjectModification: 2017_07_28-AM-09_43_30

Theory : cubical!type!theory


Home Index