Nuprl Lemma : interval-presheaf_wf
𝕀 ∈ SmallCubicalSet
Proof
Definitions occuring in Statement : 
interval-presheaf: 𝕀, 
small_cubical_set: SmallCubicalSet, 
member: t ∈ T
Definitions unfolded in proof : 
small_cubical_set: SmallCubicalSet, 
interval-presheaf: 𝕀, 
member: t ∈ T, 
small_ps_context: small_ps_context{i:l}(C), 
cat-functor: Functor(C1;C2), 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
cat-ob: cat-ob(C), 
pi1: fst(t), 
op-cat: op-cat(C), 
spreadn: spread4, 
cube-cat: CubeCat, 
fset: fset(T), 
cat-arrow: cat-arrow(C), 
pi2: snd(t), 
names-hom: I ⟶ J, 
and: P ∧ Q, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
type-cat: TypeCat, 
cat-id: cat-id(C), 
cat-comp: cat-comp(C), 
uimplies: b supposing a, 
nh-id: 1, 
dM_inc: <x>, 
dminc: <i>, 
free-dl-inc: free-dl-inc(x), 
fset-singleton: {x}, 
cons: [a / b], 
dma-neg: ¬(x), 
record-select: r.x, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
btrue: tt, 
dm-neg: ¬(x), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
DeMorgan-algebra: DeMorganAlgebra, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
dma-hom: dma-hom(dma1;dma2), 
lattice-0: 0, 
bfalse: ff, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
empty-fset: {}, 
nil: [], 
it: ⋅, 
lattice-1: 1, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
compose: f o g, 
nh-comp: g ⋅ f, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g), 
dM-lift: dM-lift(I;J;f), 
implies: P ⇒ Q, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
lattice-point_wf, 
dM_wf, 
subtype_rel_self, 
fset_wf, 
nat_wf, 
cat-ob_wf, 
op-cat_wf, 
cube-cat_wf, 
dM-lift_wf2, 
names-hom_wf, 
cat-arrow_wf, 
type-cat_wf, 
dM-lift-unique-fun, 
nh-comp_wf, 
cat-id_wf, 
cat-comp_wf, 
nh-id_wf, 
dM_inc_wf, 
names_wf, 
dma-neg_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
lattice-0_wf, 
lattice-1_wf, 
compose-dma-hom, 
dM-lift_wf, 
squash_wf, 
true_wf, 
istype-universe, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
dependent_set_memberEquality_alt, 
dependent_pairEquality_alt, 
lambdaEquality_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
universeIsType, 
inhabitedIsType, 
functionIsType, 
instantiate, 
lambdaFormation_alt, 
independent_pairFormation, 
independent_isectElimination, 
productElimination, 
productIsType, 
equalityIstype, 
isect_memberFormation_alt, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
cumulativity, 
isectEquality, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
isectIsType, 
imageElimination, 
universeEquality, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mBbbI{}  \mmember{}  SmallCubicalSet
Date html generated:
2020_05_20-PM-01_39_59
Last ObjectModification:
2019_12_09-PM-07_29_58
Theory : cubical!type!theory
Home
Index