Nuprl Lemma : eq_int_eq_true_intro

[i,j:ℤ].  (i =z j) tt supposing j ∈ ℤ


Proof




Definitions occuring in Statement :  eq_int: (i =z j) btrue: tt uimplies: supposing a uall: [x:A]. B[x] int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q sq_type: SQType(T) all: x:A. B[x]
Lemmas referenced :  subtype_base_sq bool_wf bool_subtype_base equal_wf squash_wf true_wf eq_int_eq_true btrue_wf subtype_rel_self iff_weakening_equal equal-wf-base int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination applyEquality lambdaEquality imageElimination hypothesisEquality equalityTransitivity equalitySymmetry universeEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed because_Cache productElimination independent_functionElimination dependent_functionElimination axiomSqEquality intEquality isect_memberEquality

Latex:
\mforall{}[i,j:\mBbbZ{}].    (i  =\msubz{}  j)  \msim{}  tt  supposing  i  =  j



Date html generated: 2019_06_20-AM-11_33_11
Last ObjectModification: 2018_09_17-AM-11_19_10

Theory : int_1


Home Index