Nuprl Lemma : subset-I_cube

[X,Y:j⊢].  ∀I:fset(ℕ). (Y(I) ⊆X(I)) supposing sub_cubical_set{j:l}(Y; X)


Proof




Definitions occuring in Statement :  sub_cubical_set: Y ⊆ X I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet sub_cubical_set: Y ⊆ X sub_ps_context: Y ⊆ X cube_set_map: A ⟶ B csm-id: 1(X) pscm-id: 1(X) cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I)
Lemmas referenced :  subset-I_set cube-cat_wf cat_ob_pair_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[X,Y:j\mvdash{}].    \mforall{}I:fset(\mBbbN{}).  (Y(I)  \msubseteq{}r  X(I))  supposing  sub\_cubical\_set\{j:l\}(Y;  X)



Date html generated: 2020_05_20-PM-01_43_38
Last ObjectModification: 2020_04_03-PM-04_09_57

Theory : cubical!type!theory


Home Index