Nuprl Lemma : btrue_neq_bfalse
¬tt = ff
Proof
Definitions occuring in Statement : 
bfalse: ff, 
btrue: tt, 
bool: 𝔹, 
not: ¬A, 
equal: s = t ∈ T
Definitions unfolded in proof : 
not: ¬A, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
uimplies: b supposing a, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
guard: {T}, 
true: True, 
false: False
Lemmas referenced : 
equal_wf, 
bool_wf, 
btrue_wf, 
bfalse_wf, 
ifthenelse_wf, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
intEquality, 
natural_numberEquality, 
equalityUniverse, 
levelHypothesis, 
sqequalRule, 
instantiate, 
cumulativity, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
promote_hyp
Latex:
\mneg{}tt  =  ff
Date html generated:
2016_05_13-PM-03_55_30
Last ObjectModification:
2015_12_26-AM-10_53_13
Theory : bool_1
Home
Index