Nuprl Lemma : thin-context-subset-adjoin

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[T:{Gamma ⊢ _}]. ∀[t:{Gamma.T ⊢ _}].  Gamma, phi.T ⊢ t


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  subset-cubical-type cube-context-adjoin_wf cubical-type-cumulativity2 context-subset_wf thin-context-subset sub_cubical_set_functionality cubical_set_cumulativity-i-j context-subset-is-subset cubical-type_wf istype-cubical-term face-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesisEquality applyEquality thin instantiate extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesis sqequalRule equalityTransitivity equalitySymmetry independent_isectElimination axiomEquality universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{Gamma  \mvdash{}  \_\}].  \mforall{}[t:\{Gamma.T  \mvdash{}  \_\}].    Gamma,  phi.T  \mvdash{}  t



Date html generated: 2020_05_20-PM-02_55_01
Last ObjectModification: 2020_04_14-PM-04_46_03

Theory : cubical!type!theory


Home Index