Nuprl Lemma : name-morph-1-satisfies
∀[I,J:fset(ℕ)]. ∀[f:J ⟶ I].  (1 f) = 1
Proof
Definitions occuring in Statement : 
name-morph-satisfies: (psi f) = 1, 
face_lattice: face_lattice(I), 
names-hom: I ⟶ J, 
lattice-1: 1, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
name-morph-satisfies: (psi f) = 1, 
squash: ↓T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
so_apply: x[s], 
uimplies: b supposing a, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fl-morph-1, 
lattice-1_wf, 
bdd-distributive-lattice_wf, 
iff_weakening_equal, 
names-hom_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
sqequalRule, 
instantiate, 
productEquality, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].    (1  f)  =  1
Date html generated:
2017_10_05-AM-01_18_10
Last ObjectModification:
2017_07_28-AM-09_33_26
Theory : cubical!type!theory
Home
Index