Nuprl Lemma : name-morph-1-satisfies

[I,J:fset(ℕ)]. ∀[f:J ⟶ I].  (1 f) 1


Proof




Definitions occuring in Statement :  name-morph-satisfies: (psi f) 1 face_lattice: face_lattice(I) names-hom: I ⟶ J lattice-1: 1 fset: fset(T) nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T name-morph-satisfies: (psi f) 1 squash: T prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf fl-morph-1 lattice-1_wf bdd-distributive-lattice_wf iff_weakening_equal names-hom_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality sqequalRule instantiate productEquality cumulativity because_Cache independent_isectElimination setElimination rename natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].    (1  f)  =  1



Date html generated: 2017_10_05-AM-01_18_10
Last ObjectModification: 2017_07_28-AM-09_33_26

Theory : cubical!type!theory


Home Index