Nuprl Lemma : csm-id-adjoin_wf-interval-0
∀[Gamma:j⊢]. ([0(𝕀)] ∈ Gamma j⟶ Gamma.𝕀)
Proof
Definitions occuring in Statement : 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
csm-id-adjoin_wf, 
interval-type_wf, 
interval-0_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  ([0(\mBbbI{})]  \mmember{}  Gamma  j{}\mrightarrow{}  Gamma.\mBbbI{})
Date html generated:
2020_05_20-PM-02_36_02
Last ObjectModification:
2020_04_04-PM-02_09_55
Theory : cubical!type!theory
Home
Index