Nuprl Lemma : csm-id-adjoin_wf-interval-0

[Gamma:j⊢]. ([0(𝕀)] ∈ Gamma j⟶ Gamma.𝕀)


Proof




Definitions occuring in Statement :  interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  csm-id-adjoin_wf interval-type_wf interval-0_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis equalityTransitivity equalitySymmetry universeIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  ([0(\mBbbI{})]  \mmember{}  Gamma  j{}\mrightarrow{}  Gamma.\mBbbI{})



Date html generated: 2020_05_20-PM-02_36_02
Last ObjectModification: 2020_04_04-PM-02_09_55

Theory : cubical!type!theory


Home Index