Nuprl Lemma : composition-type-lemma1
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[I:fset(ℕ)]. ∀[rho:Gamma(I)].
  ((A)[0(𝕀)](rho) = A((new-name(I)0)((s(rho);<new-name(I)>))) ∈ Type)
Proof
Definitions occuring in Statement : 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
csm-id-adjoin: [u], 
cc-adjoin-cube: (v;u), 
cube-context-adjoin: X.A, 
csm-ap-type: (AF)s, 
cubical-type-at: A(a), 
cubical-type: {X ⊢ _}, 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
nc-0: (i0), 
nc-s: s, 
new-name: new-name(I), 
add-name: I+i, 
dM_inc: <x>, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
prop: ℙ, 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
csm-ap: (s)x, 
csm-id: 1(X), 
csm-adjoin: (s;u), 
cc-adjoin-cube: (v;u), 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
lattice-point: Point(l), 
record-select: r.x, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
btrue: tt, 
cubical-type-at: A(a), 
pi1: fst(t), 
interval-type: 𝕀, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
interval-presheaf: 𝕀, 
names: names(I), 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nc-0: (i0), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
nequal: a ≠ b ∈ T , 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-type_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
cubical_set_wf, 
csm-ap-type-at, 
cubical-type-at_wf, 
squash_wf, 
true_wf, 
cc-adjoin-cube-restriction, 
cc-adjoin-cube_wf, 
istype-cubical-type-at, 
equal_wf, 
istype-universe, 
cube-set-restriction-comp, 
add-name_wf, 
new-name_wf, 
nc-s_wf, 
f-subset-add-name, 
nc-0_wf, 
subtype_rel_self, 
iff_weakening_equal, 
cube-set-restriction-when-id, 
nh-comp_wf, 
s-comp-nc-0-new, 
interval-type-ap-morph, 
dM0_wf, 
dM-lift-inc, 
trivial-member-add-name1, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
dM0-sq-empty, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
eq_int_eq_true, 
btrue_wf, 
not_assert_elim, 
btrue_neq_bfalse, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
applyEquality, 
Error :memTop, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
dependent_functionElimination, 
universeEquality, 
setElimination, 
rename, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
intEquality, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
cumulativity, 
voidElimination, 
approximateComputation, 
int_eqEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Gamma(I)].
    ((A)[0(\mBbbI{})](rho)  =  A((new-name(I)0)((s(rho);<new-name(I)>))))
Date html generated:
2020_05_20-PM-04_06_59
Last ObjectModification:
2020_04_10-AM-03_43_47
Theory : cubical!type!theory
Home
Index