Nuprl Lemma : csm-ap-interval-1-adjoin-lemma
∀H:j⊢. ∀I:fset(ℕ). ∀v:H(I). ∀j:{i:ℕ| ¬i ∈ I} .  ((j1)((s(v);<j>)) = ([1(𝕀)])v ∈ H.𝕀(I))
Proof
Definitions occuring in Statement : 
interval-1: 1(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cc-adjoin-cube: (v;u)
, 
cube-context-adjoin: X.A
, 
csm-ap: (s)x
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
nc-1: (i1)
, 
nc-s: s
, 
add-name: I+i
, 
dM_inc: <x>
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
false: False
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
true: True
, 
squash: ↓T
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
interval-1: 1(𝕀)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
names: names(I)
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
dM1: 1
, 
lattice-1: 1
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
Lemmas referenced : 
cubical_set_wf, 
fset_wf, 
I_cube_wf, 
istype-void, 
strong-subtype-self, 
istype-int, 
le_wf, 
strong-subtype-set3, 
strong-subtype-deq-subtype, 
int-deq_wf, 
nat_wf, 
fset-member_wf, 
istype-nat, 
cubical-type_wf, 
istype-cubical-type-at, 
true_wf, 
squash_wf, 
cc-adjoin-cube_wf, 
interval-type_wf, 
cc-adjoin-cube-restriction, 
csm-id-adjoin-ap, 
cube-set-restriction-id, 
nc-1_wf, 
f-subset-add-name, 
nc-s_wf, 
istype-le, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
add-name_wf, 
equal_wf, 
istype-universe, 
cube-set-restriction-comp, 
subtype_rel_self, 
iff_weakening_equal, 
cube-set-restriction_wf, 
names-hom_wf, 
s-comp-nc-1, 
interval-type-at-is-point, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
interval-type-ap-inc, 
trivial-member-add-name1, 
dM1_wf, 
nc-1-lemma2
Rules used in proof : 
instantiate, 
hypothesisEquality, 
natural_numberEquality, 
lambdaEquality_alt, 
because_Cache, 
independent_isectElimination, 
intEquality, 
applyEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
universeIsType, 
functionIsType, 
sqequalRule, 
extract_by_obid, 
introduction, 
setIsType, 
hypothesis, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
baseClosed, 
imageMemberEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
imageElimination, 
Error :memTop, 
voidElimination, 
independent_pairFormation, 
int_eqEquality, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
rename, 
setElimination, 
dependent_set_memberEquality_alt, 
universeEquality, 
productElimination, 
inhabitedIsType, 
productEquality, 
cumulativity, 
isectEquality
Latex:
\mforall{}H:j\mvdash{}.  \mforall{}I:fset(\mBbbN{}).  \mforall{}v:H(I).  \mforall{}j:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  .    ((j1)((s(v);<j>))  =  ([1(\mBbbI{})])v)
Date html generated:
2020_05_20-PM-02_36_40
Last ObjectModification:
2020_04_04-PM-01_35_06
Theory : cubical!type!theory
Home
Index