Nuprl Lemma : csm-ap-interval-1-adjoin-lemma

H:j⊢. ∀I:fset(ℕ). ∀v:H(I). ∀j:{i:ℕ| ¬i ∈ I} .  ((j1)((s(v);<j>)) ([1(𝕀)])v ∈ H.𝕀(I))


Proof




Definitions occuring in Statement :  interval-1: 1(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-adjoin-cube: (v;u) cube-context-adjoin: X.A csm-ap: (s)x cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-1: (i1) nc-s: s add-name: I+i dM_inc: <x> fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: all: x:A. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  false: False prop: so_apply: x[s] so_lambda: λ2x.t[x] nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A all: x:A. B[x] true: True squash: T and: P ∧ Q exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  guard: {T} iff: ⇐⇒ Q rev_implies:  Q interval-1: 1(𝕀) DeMorgan-algebra: DeMorganAlgebra names: names(I) fset-singleton: {x} cons: [a b] dM1: 1 lattice-1: 1 record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt
Lemmas referenced :  cubical_set_wf fset_wf I_cube_wf istype-void strong-subtype-self istype-int le_wf strong-subtype-set3 strong-subtype-deq-subtype int-deq_wf nat_wf fset-member_wf istype-nat cubical-type_wf istype-cubical-type-at true_wf squash_wf cc-adjoin-cube_wf interval-type_wf cc-adjoin-cube-restriction csm-id-adjoin-ap cube-set-restriction-id nc-1_wf f-subset-add-name nc-s_wf istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties add-name_wf equal_wf istype-universe cube-set-restriction-comp subtype_rel_self iff_weakening_equal cube-set-restriction_wf names-hom_wf s-comp-nc-1 interval-type-at-is-point lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf interval-type-ap-inc trivial-member-add-name1 dM1_wf nc-1-lemma2
Rules used in proof :  instantiate hypothesisEquality natural_numberEquality lambdaEquality_alt because_Cache independent_isectElimination intEquality applyEquality thin isectElimination sqequalHypSubstitution universeIsType functionIsType sqequalRule extract_by_obid introduction setIsType hypothesis cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution baseClosed imageMemberEquality equalitySymmetry equalityTransitivity dependent_functionElimination imageElimination Error :memTop,  voidElimination independent_pairFormation int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation unionElimination rename setElimination dependent_set_memberEquality_alt universeEquality productElimination inhabitedIsType productEquality cumulativity isectEquality

Latex:
\mforall{}H:j\mvdash{}.  \mforall{}I:fset(\mBbbN{}).  \mforall{}v:H(I).  \mforall{}j:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  .    ((j1)((s(v);<j>))  =  ([1(\mBbbI{})])v)



Date html generated: 2020_05_20-PM-02_36_40
Last ObjectModification: 2020_04_04-PM-01_35_06

Theory : cubical!type!theory


Home Index