Nuprl Lemma : nc-1-lemma2
∀j:ℕ. ((j1) j ~ {{}})
Proof
Definitions occuring in Statement : 
nc-1: (i1), 
empty-fset: {}, 
fset-singleton: {x}, 
nat: ℕ, 
all: ∀x:A. B[x], 
apply: f a, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
nc-1: (i1), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
nequal: a ≠ b ∈ T , 
ge: i ≥ j , 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
prop: ℙ
Lemmas referenced : 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
nat_properties, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
inhabitedIsType, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
natural_numberEquality, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
universeIsType
Latex:
\mforall{}j:\mBbbN{}.  ((j1)  j  \msim{}  \{\{\}\})
Date html generated:
2020_05_20-PM-01_36_21
Last ObjectModification:
2020_01_04-AM-11_38_07
Theory : cubical!type!theory
Home
Index