Nuprl Lemma : csm-context-subset-subtype3

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma ⊢ _}]. ∀[X:j⊢].  (Gamma.A ij⟶ X ⊆Gamma, phi.A ij⟶ X)


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  cube_set_map_subtype3 cube-context-adjoin_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j context-subset_wf thin-context-subset sub_cubical_set_self sub_cubical_set_functionality context-subset-is-subset cubical-type_wf cubical-term_wf face-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule equalityTransitivity equalitySymmetry independent_isectElimination axiomEquality inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[X:j\mvdash{}].
    (Gamma.A  ij{}\mrightarrow{}  X  \msubseteq{}r  Gamma,  phi.A  ij{}\mrightarrow{}  X)



Date html generated: 2020_05_20-PM-02_59_14
Last ObjectModification: 2020_04_06-AM-11_30_46

Theory : cubical!type!theory


Home Index