Nuprl Lemma : csm-context-subset-subtype3
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma ⊢ _}]. ∀[X:j⊢].  (Gamma.A ij⟶ X ⊆r Gamma, phi.A ij⟶ X)
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
cube_set_map_subtype3, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
context-subset_wf, 
thin-context-subset, 
sub_cubical_set_self, 
sub_cubical_set_functionality, 
context-subset-is-subset, 
cubical-type_wf, 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
axiomEquality, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[X:j\mvdash{}].
    (Gamma.A  ij{}\mrightarrow{}  X  \msubseteq{}r  Gamma,  phi.A  ij{}\mrightarrow{}  X)
Date html generated:
2020_05_20-PM-02_59_14
Last ObjectModification:
2020_04_06-AM-11_30_46
Theory : cubical!type!theory
Home
Index