Nuprl Lemma : composition-structure-cumulativity
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}].  (Gamma +⊢ Compositon(A) ⊆r Gamma ⊢ Compositon(A))
Proof
Definitions occuring in Statement : 
composition-structure: Gamma ⊢ Compositon(A), 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
composition-structure: Gamma ⊢ Compositon(A), 
all: ∀x:A. B[x], 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp), 
cube_set_map: A ⟶ B, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
cat-ob: cat-ob(C), 
pi1: fst(t), 
op-cat: op-cat(C), 
spreadn: spread4, 
cube-cat: CubeCat, 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
cat-arrow: cat-arrow(C), 
pi2: snd(t), 
type-cat: TypeCat, 
names-hom: I ⟶ J, 
cat-comp: cat-comp(C), 
compose: f o g, 
prop: ℙ
Lemmas referenced : 
composition-function-cumulativity, 
cubical_set_cumulativity-i-j, 
subtype_rel_self, 
cube_set_map_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
uniform-comp-function_wf, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
dependent_functionElimination, 
hypothesis, 
sqequalRule, 
lambdaFormation_alt, 
instantiate, 
isectElimination, 
because_Cache, 
universeIsType, 
inhabitedIsType, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    (Gamma  +\mvdash{}  Compositon(A)  \msubseteq{}r  Gamma  \mvdash{}  Compositon(A))
Date html generated:
2020_05_20-PM-04_22_29
Last ObjectModification:
2020_04_14-AM-01_26_01
Theory : cubical!type!theory
Home
Index