Nuprl Lemma : composition-type-lemma6
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[u:{Gamma, phi.𝕀 ⊢ _:A}].
  ({Gamma ⊢ _:(A)[1(𝕀)][phi |⟶ (u)[1(𝕀)]]} ∈ 𝕌{[i | j']})
Proof
Definitions occuring in Statement : 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-1: 1(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
guard: {T}
Lemmas referenced : 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-1, 
cubical-type-cumulativity2, 
csm-ap-term_wf, 
context-subset_wf, 
subset-cubical-type, 
sub_cubical_set_functionality, 
context-subset-is-subset, 
context-subset-adjoin-subtype, 
cubical-term_wf, 
cubical-type_wf, 
face-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[u:\{Gamma,  phi.\mBbbI{}  \mvdash{}  \_:A\}].
    (\{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[1(\mBbbI{})]]\}  \mmember{}  \mBbbU{}\{[i  |  j']\})
Date html generated:
2020_05_20-PM-04_09_55
Last ObjectModification:
2020_04_13-PM-00_35_51
Theory : cubical!type!theory
Home
Index