Nuprl Lemma : context-map-comp2
∀[G:j⊢]. ∀[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[a:G(I)].  (<a> o <f> = <f(a)> ∈ formal-cube(J) ij⟶ G)
Proof
Definitions occuring in Statement : 
csm-comp: G o F
, 
context-map: <rho>
, 
cube_set_map: A ⟶ B
, 
formal-cube: formal-cube(I)
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
names-hom: I ⟶ J
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube-cat: CubeCat
, 
all: ∀x:A. B[x]
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cube_set_map: A ⟶ B
, 
formal-cube: formal-cube(I)
, 
Yoneda: Yoneda(I)
, 
csm-comp: G o F
, 
pscm-comp: G o F
, 
context-map: <rho>
, 
ps-context-map: <rho>
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
Lemmas referenced : 
ps-context-map-comp2, 
cube-cat_wf, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[a:G(I)].    (<a>  o  <f>  =  <f(a)>)
Date html generated:
2020_05_20-PM-01_54_00
Last ObjectModification:
2020_04_04-AM-09_33_26
Theory : cubical!type!theory
Home
Index