Nuprl Lemma : context-map-comp2

[G:j⊢]. ∀[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[a:G(I)].  (<a> o <f> = <f(a)> ∈ formal-cube(J) ij⟶ G)


Proof




Definitions occuring in Statement :  csm-comp: F context-map: <rho> cube_set_map: A ⟶ B formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cube_set_map: A ⟶ B formal-cube: formal-cube(I) Yoneda: Yoneda(I) csm-comp: F pscm-comp: F context-map: <rho> ps-context-map: <rho> cube-set-restriction: f(s) psc-restriction: f(s)
Lemmas referenced :  ps-context-map-comp2 cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[a:G(I)].    (<a>  o  <f>  =  <f(a)>)



Date html generated: 2020_05_20-PM-01_54_00
Last ObjectModification: 2020_04_04-AM-09_33_26

Theory : cubical!type!theory


Home Index