Nuprl Lemma : ps-context-map-comp2
∀[C:SmallCategory]. ∀[G:ps_context{j:l}(C)]. ∀[I,J:cat-ob(C)]. ∀[f:cat-arrow(C) J I]. ∀[a:G(I)].
  (<a> o <f> = <f(a)> ∈ psc_map{[i | j]:l}(C; Yoneda(J); G))
Proof
Definitions occuring in Statement : 
pscm-comp: G o F, 
ps-context-map: <rho>, 
psc_map: A ⟶ B, 
Yoneda: Yoneda(I), 
psc-restriction: f(s), 
I_set: A(I), 
ps_context: __⊢, 
uall: ∀[x:A]. B[x], 
apply: f a, 
equal: s = t ∈ T, 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C), 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
cat-arrow: cat-arrow(C), 
pi1: fst(t), 
pi2: snd(t), 
I_set: A(I), 
functor-ob: ob(F), 
Yoneda: Yoneda(I), 
uimplies: b supposing a, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
type-cat: TypeCat, 
pscm-comp: G o F, 
compose: f o g, 
ps-context-map: <rho>, 
functor-arrow: arrow(F), 
psc-restriction: f(s)
Lemmas referenced : 
pscm-equal, 
Yoneda_wf, 
small-category-cumulativity-2, 
ps_context_cumulativity2, 
pscm-comp_wf, 
ps-context-map_wf, 
subtype_rel_self, 
I_set_wf, 
cat-arrow_wf, 
cat-ob_wf, 
ps_context_wf, 
small-category_wf, 
psc-restriction_wf, 
subtype_rel-equal, 
op-cat_wf, 
cat_ob_op_lemma, 
psc-restriction-comp, 
arrow_pair_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
dependent_functionElimination, 
functionExtensionality, 
independent_isectElimination, 
universeIsType, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
Error :memTop
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[G:ps\_context\{j:l\}(C)].  \mforall{}[I,J:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  J  I].  \mforall{}[a:G(I)].
    (<a>  o  <f>  =  <f(a)>)
Date html generated:
2020_05_20-PM-01_27_04
Last ObjectModification:
2020_04_03-PM-00_28_31
Theory : presheaf!models!of!type!theory
Home
Index