Nuprl Lemma : context-subset-1-subtype

[Gamma:j⊢]. ({Gamma, 1(𝔽) ⊢ _} ⊆{Gamma ⊢ _})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-1: 1(𝔽) cubical-type: {X ⊢ _} cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  subset-cubical-type context-subset_wf face-1_wf context-1-subset cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination instantiate because_Cache sqequalRule axiomEquality universeIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  (\{Gamma,  1(\mBbbF{})  \mvdash{}  \_\}  \msubseteq{}r  \{Gamma  \mvdash{}  \_\})



Date html generated: 2020_05_20-PM-02_54_28
Last ObjectModification: 2020_04_04-PM-05_08_55

Theory : cubical!type!theory


Home Index