Nuprl Lemma : contr-path_wf
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[c:{X ⊢ _:Contractible(A)}]. ∀[x:{X ⊢ _:A}].
  (contr-path(c;x) ∈ {X ⊢ _:(Path_A contr-center(c) x)})
Proof
Definitions occuring in Statement : 
contr-path: contr-path(c;x)
, 
contr-center: contr-center(c)
, 
contractible-type: Contractible(A)
, 
path-type: (Path_A a b)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
contractible-type: Contractible(A)
, 
contr-path: contr-path(c;x)
, 
subtype_rel: A ⊆r B
, 
contr-center: contr-center(c)
, 
squash: ↓T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
cubical-type: {X ⊢ _}
, 
csm-id: 1(X)
, 
csm-ap-type: (AF)s
, 
cc-fst: p
, 
csm-id-adjoin: [u]
, 
csm-ap: (s)x
, 
csm-adjoin: (s;u)
, 
pi1: fst(t)
, 
cc-snd: q
, 
csm-comp: G o F
, 
compose: f o g
, 
csm-ap-term: (t)s
, 
pi2: snd(t)
Lemmas referenced : 
cubical-snd_wf, 
cubical-pi_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
csm-ap-type_wf, 
cc-fst_wf, 
path-type_wf, 
csm-ap-term_wf, 
cc-snd_wf, 
cubical-term_wf, 
contractible-type_wf, 
cubical-type_wf, 
cubical_set_wf, 
squash_wf, 
true_wf, 
equal_wf, 
istype-universe, 
contr-center_wf, 
csm-cubical-pi, 
csm-id-adjoin_wf, 
subtype_rel_self, 
iff_weakening_equal, 
csm-ap-id-type, 
csm-path-type, 
csm-adjoin_wf, 
csm-comp_wf, 
csm_id_adjoin_fst_type_lemma, 
subtype_rel-equal, 
cube_set_map_wf, 
csm-id_wf, 
csm_ap_term_fst_adjoin_lemma, 
cubical-app_wf, 
csm_id_adjoin_fst_term_lemma, 
cc_snd_csm_id_adjoin_lemma, 
csm-ap-id-term, 
subset-cubical-term2, 
sub_cubical_set_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesisEquality, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
instantiate, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
lambdaEquality_alt, 
imageElimination, 
universeEquality, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
hyp_replacement, 
setElimination, 
rename, 
Error :memTop
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[c:\{X  \mvdash{}  \_:Contractible(A)\}].  \mforall{}[x:\{X  \mvdash{}  \_:A\}].
    (contr-path(c;x)  \mmember{}  \{X  \mvdash{}  \_:(Path\_A  contr-center(c)  x)\})
Date html generated:
2020_05_20-PM-03_23_17
Last ObjectModification:
2020_04_07-PM-04_09_09
Theory : cubical!type!theory
Home
Index