Nuprl Lemma : contr-witness_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[c:{X ⊢ _:A}]. ∀[p:{X.A ⊢ _:(Path_(A)p (c)p q)}].
  (contr-witness(X;c;p) ∈ {X ⊢ _:Contractible(A)})


Proof




Definitions occuring in Statement :  contr-witness: contr-witness(X;c;p) contractible-type: Contractible(A) path-type: (Path_A b) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T contr-witness: contr-witness(X;c;p) contractible-type: Contractible(A) subtype_rel: A ⊆B squash: T prop: true: True all: x:A. B[x] uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q cubical-type: {X ⊢ _} cc-snd: q cc-fst: p csm-ap-type: (AF)s csm-id-adjoin: [u] csm-comp: F csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) compose: g pi1: fst(t) csm-ap-term: (t)s pi2: snd(t)
Lemmas referenced :  cubical-pair_wf cubical-pi_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf path-type_wf csm-ap-term_wf cc-snd_wf cubical-term_wf cubical-type_wf cubical_set_wf squash_wf true_wf cubical-lambda_wf equal_wf istype-universe csm-cubical-pi csm-id-adjoin_wf subtype_rel_self iff_weakening_equal csm_id_adjoin_fst_type_lemma csm-ap-id-type csm-path-type csm-adjoin_wf csm-comp_wf subtype_rel-equal cube_set_map_wf csm-id_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality hypothesis sqequalRule because_Cache axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement universeEquality dependent_functionElimination independent_isectElimination productElimination independent_functionElimination Error :memTop,  setElimination rename

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[c:\{X  \mvdash{}  \_:A\}].  \mforall{}[p:\{X.A  \mvdash{}  \_:(Path\_(A)p  (c)p  q)\}].
    (contr-witness(X;c;p)  \mmember{}  \{X  \mvdash{}  \_:Contractible(A)\})



Date html generated: 2020_05_20-PM-03_23_30
Last ObjectModification: 2020_04_07-PM-03_49_59

Theory : cubical!type!theory


Home Index