Nuprl Lemma : csm+_wf+

[H,K:j⊢]. ∀[A:{H ⊢ _}]. ∀[tau:K ij⟶ H]. ∀[B:{H.A ⊢ _}].  (tau++ ∈ K.(A)tau.(B)tau+ ij⟶ H.A.B)


Proof




Definitions occuring in Statement :  csm+: tau+ cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  csm+_wf cube-context-adjoin_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-ap-type_wf cubical-type_wf cube_set_map_wf cubical_set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality because_Cache sqequalRule equalityTransitivity equalitySymmetry universeIsType inhabitedIsType

Latex:
\mforall{}[H,K:j\mvdash{}].  \mforall{}[A:\{H  \mvdash{}  \_\}].  \mforall{}[tau:K  ij{}\mrightarrow{}  H].  \mforall{}[B:\{H.A  \mvdash{}  \_\}].    (tau++  \mmember{}  K.(A)tau.(B)tau+  ij{}\mrightarrow{}  H.A.B)



Date html generated: 2020_05_20-PM-01_58_39
Last ObjectModification: 2020_04_09-AM-10_53_58

Theory : cubical!type!theory


Home Index