Nuprl Lemma : csm+_wf+
∀[H,K:j⊢]. ∀[A:{H ⊢ _}]. ∀[tau:K ij⟶ H]. ∀[B:{H.A ⊢ _}].  (tau++ ∈ K.(A)tau.(B)tau+ ij⟶ H.A.B)
Proof
Definitions occuring in Statement : 
csm+: tau+
, 
cube-context-adjoin: X.A
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
csm+_wf, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-ap-type_wf, 
cubical-type_wf, 
cube_set_map_wf, 
cubical_set_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
applyEquality, 
because_Cache, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}[H,K:j\mvdash{}].  \mforall{}[A:\{H  \mvdash{}  \_\}].  \mforall{}[tau:K  ij{}\mrightarrow{}  H].  \mforall{}[B:\{H.A  \mvdash{}  \_\}].    (tau++  \mmember{}  K.(A)tau.(B)tau+  ij{}\mrightarrow{}  H.A.B)
Date html generated:
2020_05_20-PM-01_58_39
Last ObjectModification:
2020_04_09-AM-10_53_58
Theory : cubical!type!theory
Home
Index