Nuprl Lemma : csm-context-subset-subtype
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[X:j⊢].  (X j⟶ Gamma, phi.𝕀 ⊆r X j⟶ Gamma.𝕀)
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-type: 𝕀
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
cube-context-adjoin_wf, 
context-subset_wf, 
interval-type_wf, 
cube_set_map_subtype3, 
sub_cubical_set_functionality, 
context-subset-is-subset, 
sub_cubical_set_self, 
cubical-term_wf, 
face-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[X:j\mvdash{}].    (X  j{}\mrightarrow{}  Gamma,  phi.\mBbbI{}  \msubseteq{}r  X  j{}\mrightarrow{}  Gamma.\mBbbI{})
Date html generated:
2020_05_20-PM-02_58_39
Last ObjectModification:
2020_04_06-AM-11_33_12
Theory : cubical!type!theory
Home
Index