Nuprl Lemma : csm-cubical-pi-typed
∀X,Delta:j⊢. ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀s:Delta ij⟶ X.  ((ΠA B)s = Delta ⊢ Π(A)s (B)(s)dep ∈ {Delta ⊢ _})
Proof
Definitions occuring in Statement : 
csm-dependent: (s)dep
, 
cubical-pi: ΠA B
, 
cube-context-adjoin: X.A
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
csm-dependent: (s)dep
, 
typed-cc-snd: tq
, 
typed-cc-fst: tp{i:l}
Lemmas referenced : 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-dependent_wf, 
cube_set_map_wf, 
cubical-type_wf, 
cubical_set_wf, 
csm-cubical-pi
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}X,Delta:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.  \mforall{}s:Delta  ij{}\mrightarrow{}  X.    ((\mPi{}A  B)s  =  Delta  \mvdash{}  \mPi{}(A)s  (B)(s)dep)
Date html generated:
2020_05_20-PM-02_00_43
Last ObjectModification:
2020_04_04-AM-09_52_39
Theory : cubical!type!theory
Home
Index