Nuprl Lemma : csm-cubical-pi-typed

X,Delta:j⊢. ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀s:Delta ij⟶ X.  ((ΠB)s Delta ⊢ Π(A)s (B)(s)dep ∈ {Delta ⊢ _})


Proof




Definitions occuring in Statement :  csm-dependent: (s)dep cubical-pi: ΠB cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B csm-dependent: (s)dep typed-cc-snd: tq typed-cc-fst: tp{i:l}
Lemmas referenced :  csm-ap-type_wf cube-context-adjoin_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-dependent_wf cube_set_map_wf cubical-type_wf cubical_set_wf csm-cubical-pi
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule dependent_functionElimination universeIsType inhabitedIsType

Latex:
\mforall{}X,Delta:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.  \mforall{}s:Delta  ij{}\mrightarrow{}  X.    ((\mPi{}A  B)s  =  Delta  \mvdash{}  \mPi{}(A)s  (B)(s)dep)



Date html generated: 2020_05_20-PM-02_00_43
Last ObjectModification: 2020_04_04-AM-09_52_39

Theory : cubical!type!theory


Home Index