Nuprl Lemma : csm-cubical-refl

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}]. ∀[H:j⊢]. ∀[s:H j⟶ X].  ((refl(a))s refl((a)s) ∈ {H ⊢ _:(Path_(A)s (a)s (a)s)})


Proof




Definitions occuring in Statement :  cubical-refl: refl(a) path-type: (Path_A b) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-refl: refl(a) member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B prop: squash: T true: True cubical-type: {X ⊢ _} csm-ap-term: (t)s csm-ap-type: (AF)s cc-fst: p interval-type: 𝕀 csm+: tau+ interval-1: 1(𝕀) csm-id-adjoin: [u] interval-0: 0(𝕀) csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) cc-snd: q constant-cubical-type: (X) csm-comp: F pi1: fst(t) compose: g cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C)
Lemmas referenced :  csm-term-to-path csm-ap-term_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf cc-fst_wf equal_wf squash_wf true_wf istype-universe cube_set_map_wf cubical-term_wf cubical-type-cumulativity2 cubical-type_wf cubical_set_wf path-type_wf csm-ap-type_wf csm-path-type subtype_rel_self cubical-refl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination instantiate applyEquality hypothesis sqequalRule because_Cache equalityTransitivity equalitySymmetry hyp_replacement lambdaEquality_alt imageElimination universeIsType universeEquality natural_numberEquality imageMemberEquality baseClosed inhabitedIsType setElimination rename productElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  X].    ((refl(a))s  =  refl((a)s))



Date html generated: 2020_05_20-PM-03_21_22
Last ObjectModification: 2020_04_07-PM-03_23_06

Theory : cubical!type!theory


Home Index