Nuprl Lemma : csm-cubical-refl
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}]. ∀[H:j⊢]. ∀[s:H j⟶ X].  ((refl(a))s = refl((a)s) ∈ {H ⊢ _:(Path_(A)s (a)s (a)s)})
Proof
Definitions occuring in Statement : 
cubical-refl: refl(a)
, 
path-type: (Path_A a b)
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
cubical-refl: refl(a)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
cubical-type: {X ⊢ _}
, 
csm-ap-term: (t)s
, 
csm-ap-type: (AF)s
, 
cc-fst: p
, 
interval-type: 𝕀
, 
csm+: tau+
, 
interval-1: 1(𝕀)
, 
csm-id-adjoin: [u]
, 
interval-0: 0(𝕀)
, 
csm-ap: (s)x
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
cc-snd: q
, 
constant-cubical-type: (X)
, 
csm-comp: G o F
, 
pi1: fst(t)
, 
compose: f o g
, 
cube_set_map: A ⟶ B
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-ob: cat-ob(C)
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
cube-cat: CubeCat
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
names-hom: I ⟶ J
, 
cat-comp: cat-comp(C)
Lemmas referenced : 
csm-term-to-path, 
csm-ap-term_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
cc-fst_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cube_set_map_wf, 
cubical-term_wf, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf, 
path-type_wf, 
csm-ap-type_wf, 
csm-path-type, 
subtype_rel_self, 
cubical-refl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
instantiate, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
lambdaEquality_alt, 
imageElimination, 
universeIsType, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
inhabitedIsType, 
setElimination, 
rename, 
productElimination
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  X].    ((refl(a))s  =  refl((a)s))
Date html generated:
2020_05_20-PM-03_21_22
Last ObjectModification:
2020_04_07-PM-03_23_06
Theory : cubical!type!theory
Home
Index