Nuprl Lemma : csm-term-to-path
∀[G:j⊢]. ∀[A:{G ⊢ _}].
  ∀a:{G.𝕀 ⊢ _:(A)p}
    ∀[H:j⊢]. ∀[sigma:H j⟶ G].
      ((<>(a))sigma = H ⊢ <>((a)sigma+) ∈ {H ⊢ _:(Path_(A)sigma ((a)sigma+)[0(𝕀)] ((a)sigma+)[1(𝕀)])})
Proof
Definitions occuring in Statement : 
term-to-path: <>(a), 
path-type: (Path_A a b), 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
csm+: tau+, 
csm-id-adjoin: [u], 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
cube_set_map: A ⟶ B, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
cat-ob: cat-ob(C), 
pi1: fst(t), 
op-cat: op-cat(C), 
spreadn: spread4, 
cube-cat: CubeCat, 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
cat-arrow: cat-arrow(C), 
pi2: snd(t), 
type-cat: TypeCat, 
names-hom: I ⟶ J, 
cat-comp: cat-comp(C), 
compose: f o g, 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
true: True, 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
csm-ap-term: (t)s, 
interval-type: 𝕀, 
csm+: tau+, 
csm-ap: (s)x, 
csm-id: 1(X), 
csm-adjoin: (s;u), 
cc-snd: q, 
cc-fst: p, 
constant-cubical-type: (X), 
csm-ap-type: (AF)s, 
csm-comp: G o F, 
interval-1: 1(𝕀), 
term-to-path: <>(a), 
pathtype: Path(A), 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
paths-equal, 
cubical_set_cumulativity-i-j, 
csm-ap-type_wf, 
cubical-type-cumulativity2, 
csm-ap-term_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-fst_wf, 
csm+_wf, 
subtype_rel_self, 
cube_set_map_wf, 
csm-id-adjoin_wf, 
csm-interval-type, 
interval-0_wf, 
interval-1_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical_set_wf, 
squash_wf, 
true_wf, 
csm-path-type, 
csm-id-adjoin_wf-interval-0, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm_id_adjoin_fst_type_lemma, 
csm-ap-id-type, 
csm-id-adjoin_wf-interval-1, 
path-type_wf, 
term-to-path_wf, 
p-csm+-type, 
equal_wf, 
istype-universe, 
cubical-pi_wf, 
cubical-fun-as-cubical-pi, 
iff_weakening_equal, 
cubical-lambda_wf, 
csm-cubical-lambda, 
csm-ap-type-fst-adjoin, 
csm-comp-type, 
csm-cubical-pi
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
Error :memTop, 
independent_isectElimination, 
universeIsType, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
hyp_replacement, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
universeEquality, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].
    \mforall{}a:\{G.\mBbbI{}  \mvdash{}  \_:(A)p\}.  \mforall{}[H:j\mvdash{}].  \mforall{}[sigma:H  j{}\mrightarrow{}  G].    ((<>(a))sigma  =  H  \mvdash{}  <>((a)sigma+))
Date html generated:
2020_05_20-PM-03_18_30
Last ObjectModification:
2020_04_06-PM-06_36_37
Theory : cubical!type!theory
Home
Index