Nuprl Lemma : csm-rev-type-line-comp

[G,K:j⊢]. ∀[tau:K j⟶ G]. ∀[A:{G.𝕀 ⊢ _}]. ∀[cA:G.𝕀 ⊢ CompOp(A)].
  (((cA)-)tau+ ((cA)tau+)- ∈ K.𝕀 ⊢ CompOp(((A)-)tau+))


Proof




Definitions occuring in Statement :  rev-type-line-comp: (cA)- rev-type-line: (A)- csm-composition: (comp)sigma composition-op: Gamma ⊢ CompOp(A) interval-type: 𝕀 csm+: tau+ cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rev-type-line-comp: (cA)- rev-type-line: (A)- subtype_rel: A ⊆B csm-composition: (comp)sigma interval-type: 𝕀 csm+: tau+ csm-ap: (s)x cc-snd: q interval-rev: 1-(r) cc-fst: p csm-adjoin: (s;u) constant-cubical-type: (X) csm-ap-type: (AF)s csm-comp: F cubical-term-at: u(a) pi2: snd(t) pi1: fst(t) compose: g uimplies: supposing a cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) type-cat: TypeCat all: x:A. B[x] names-hom: I ⟶ J cat-comp: cat-comp(C)
Lemmas referenced :  composition-op_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf cubical-type-cumulativity2 cubical-type_wf cube_set_map_wf cubical_set_wf interval-rev_wf cc-snd_wf subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf cc-fst_wf csm-interval-type csm-composition_wf csm+_wf_interval subtype_rel_self csm-adjoin_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis universeIsType thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality sqequalRule because_Cache isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType equalityTransitivity equalitySymmetry independent_isectElimination Error :memTop

Latex:
\mforall{}[G,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  G].  \mforall{}[A:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:G.\mBbbI{}  \mvdash{}  CompOp(A)].    (((cA)-)tau+  =  ((cA)tau+)-)



Date html generated: 2020_05_20-PM-04_18_02
Last ObjectModification: 2020_04_10-AM-04_52_19

Theory : cubical!type!theory


Home Index