Nuprl Lemma : csm-rev-type-line-comp
∀[G,K:j⊢]. ∀[tau:K j⟶ G]. ∀[A:{G.𝕀 ⊢ _}]. ∀[cA:G.𝕀 ⊢ CompOp(A)].
  (((cA)-)tau+ = ((cA)tau+)- ∈ K.𝕀 ⊢ CompOp(((A)-)tau+))
Proof
Definitions occuring in Statement : 
rev-type-line-comp: (cA)-, 
rev-type-line: (A)-, 
csm-composition: (comp)sigma, 
composition-op: Gamma ⊢ CompOp(A), 
interval-type: 𝕀, 
csm+: tau+, 
cube-context-adjoin: X.A, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rev-type-line-comp: (cA)-, 
rev-type-line: (A)-, 
subtype_rel: A ⊆r B, 
csm-composition: (comp)sigma, 
interval-type: 𝕀, 
csm+: tau+, 
csm-ap: (s)x, 
cc-snd: q, 
interval-rev: 1-(r), 
cc-fst: p, 
csm-adjoin: (s;u), 
constant-cubical-type: (X), 
csm-ap-type: (AF)s, 
csm-comp: G o F, 
cubical-term-at: u(a), 
pi2: snd(t), 
pi1: fst(t), 
compose: f o g, 
uimplies: b supposing a, 
cube_set_map: A ⟶ B, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
cat-ob: cat-ob(C), 
op-cat: op-cat(C), 
spreadn: spread4, 
cube-cat: CubeCat, 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
cat-arrow: cat-arrow(C), 
type-cat: TypeCat, 
all: ∀x:A. B[x], 
names-hom: I ⟶ J, 
cat-comp: cat-comp(C)
Lemmas referenced : 
composition-op_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cube_set_map_wf, 
cubical_set_wf, 
interval-rev_wf, 
cc-snd_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-interval-type, 
csm-composition_wf, 
csm+_wf_interval, 
subtype_rel_self, 
csm-adjoin_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
universeIsType, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
because_Cache, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
Error :memTop
Latex:
\mforall{}[G,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  G].  \mforall{}[A:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:G.\mBbbI{}  \mvdash{}  CompOp(A)].    (((cA)-)tau+  =  ((cA)tau+)-)
Date html generated:
2020_05_20-PM-04_18_02
Last ObjectModification:
2020_04_10-AM-04_52_19
Theory : cubical!type!theory
Home
Index