Nuprl Lemma : csm-same-cubical-term
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[u,v:{X ⊢ _:A}]. ∀[Y:j⊢]. ∀[s:Y j⟶ X].  Y ⊢ (u)s=(v)s:(A)s supposing X ⊢ u=v:A
Proof
Definitions occuring in Statement : 
same-cubical-term: X ⊢ u=v:A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
same-cubical-term: X ⊢ u=v:A
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
true: True
Lemmas referenced : 
csm-ap-term_wf, 
squash_wf, 
true_wf, 
cubical-term_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cube_set_map_wf, 
cubical-type_wf, 
same-cubical-term_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
applyEquality, 
thin, 
lambdaEquality_alt, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
instantiate, 
sqequalRule, 
inhabitedIsType, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u,v:\{X  \mvdash{}  \_:A\}].  \mforall{}[Y:j\mvdash{}].  \mforall{}[s:Y  j{}\mrightarrow{}  X].
    Y  \mvdash{}  (u)s=(v)s:(A)s  supposing  X  \mvdash{}  u=v:A
Date html generated:
2020_05_20-PM-03_00_12
Last ObjectModification:
2020_04_04-PM-05_14_57
Theory : cubical!type!theory
Home
Index