Nuprl Lemma : csm-same-cubical-term

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[u,v:{X ⊢ _:A}]. ∀[Y:j⊢]. ∀[s:Y j⟶ X].  Y ⊢ (u)s=(v)s:(A)s supposing X ⊢ u=v:A


Proof




Definitions occuring in Statement :  same-cubical-term: X ⊢ u=v:A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a same-cubical-term: X ⊢ u=v:A squash: T prop: subtype_rel: A ⊆B true: True
Lemmas referenced :  csm-ap-term_wf squash_wf true_wf cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cube_set_map_wf cubical-type_wf same-cubical-term_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution applyEquality thin lambdaEquality_alt imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType instantiate sqequalRule inhabitedIsType because_Cache natural_numberEquality imageMemberEquality baseClosed axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u,v:\{X  \mvdash{}  \_:A\}].  \mforall{}[Y:j\mvdash{}].  \mforall{}[s:Y  j{}\mrightarrow{}  X].
    Y  \mvdash{}  (u)s=(v)s:(A)s  supposing  X  \mvdash{}  u=v:A



Date html generated: 2020_05_20-PM-03_00_12
Last ObjectModification: 2020_04_04-PM-05_14_57

Theory : cubical!type!theory


Home Index