Nuprl Lemma : csm-universe-comp-fun

[s,A,G,H:Top].  ((CompFun(A))s CompFun((A)s))


Proof




Definitions occuring in Statement :  universe-comp-fun: CompFun(A) csm-comp-structure: (cA)tau csm-ap-term: (t)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T universe-comp-fun: CompFun(A) all: x:A. B[x] implies:  Q csm-composition: (comp)sigma comp-op-to-comp-fun: cop-to-cfun(cA) composition-term: comp cA [phi ⊢→ u] a0 csm-comp-structure: (cA)tau cubical-term-at: u(a) cc-adjoin-cube: (v;u) interval-type: 𝕀 subset-iota: iota csm-comp: F csm-ap-term: (t)s csm-ap: (s)x compose: g constant-cubical-type: (X)
Lemmas referenced :  csm-universe-comp-op istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :memTop,  inhabitedIsType lambdaFormation_alt equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomSqEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[s,A,G,H:Top].    ((CompFun(A))s  \msim{}  CompFun((A)s))



Date html generated: 2020_05_20-PM-07_18_06
Last ObjectModification: 2020_04_25-PM-09_44_58

Theory : cubical!type!theory


Home Index