Nuprl Lemma : csm-universe-comp-fun
∀[s,A,G,H:Top].  ((CompFun(A))s ~ CompFun((A)s))
Proof
Definitions occuring in Statement : 
universe-comp-fun: CompFun(A), 
csm-comp-structure: (cA)tau, 
csm-ap-term: (t)s, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe-comp-fun: CompFun(A), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
csm-composition: (comp)sigma, 
comp-op-to-comp-fun: cop-to-cfun(cA), 
composition-term: comp cA [phi ⊢→ u] a0, 
csm-comp-structure: (cA)tau, 
cubical-term-at: u(a), 
cc-adjoin-cube: (v;u), 
interval-type: 𝕀, 
subset-iota: iota, 
csm-comp: G o F, 
csm-ap-term: (t)s, 
csm-ap: (s)x, 
compose: f o g, 
constant-cubical-type: (X)
Lemmas referenced : 
csm-universe-comp-op, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :memTop, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomSqEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[s,A,G,H:Top].    ((CompFun(A))s  \msim{}  CompFun((A)s))
Date html generated:
2020_05_20-PM-07_18_06
Last ObjectModification:
2020_04_25-PM-09_44_58
Theory : cubical!type!theory
Home
Index