Nuprl Lemma : cube-set-restriction-comp2
∀X:j⊢. ∀I,J1,J2,K:fset(ℕ). ∀f:J1 ⟶ I. ∀g:K ⟶ J1. ∀a:X(I).  g(f(a)) = f ⋅ g(a) ∈ X(K) supposing J1 = J2 ∈ fset(ℕ)
Proof
Definitions occuring in Statement : 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube-cat: CubeCat
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
Lemmas referenced : 
psc-restriction-comp2, 
cube-cat_wf, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}I,J1,J2,K:fset(\mBbbN{}).  \mforall{}f:J1  {}\mrightarrow{}  I.  \mforall{}g:K  {}\mrightarrow{}  J1.  \mforall{}a:X(I).    g(f(a))  =  f  \mcdot{}  g(a)  supposing  J1  =  J2
Date html generated:
2020_05_20-PM-01_42_40
Last ObjectModification:
2020_04_03-PM-03_34_32
Theory : cubical!type!theory
Home
Index