Nuprl Lemma : cubical-fiber-id-fun
∀X:j⊢. ∀T:{X ⊢ _}.  ∀[u:{X ⊢ _:T}]. (X ⊢ Fiber(cubical-id-fun(X);u) = Σ T (Path_(T)p (u)p q) ∈ {X ⊢ _})
Proof
Definitions occuring in Statement : 
cubical-fiber: Fiber(w;a), 
path-type: (Path_A a b), 
cubical-sigma: Σ A B, 
cubical-id-fun: cubical-id-fun(X), 
cc-snd: q, 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
cubical-fiber: Fiber(w;a), 
member: t ∈ T, 
squash: ↓T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
true: True
Lemmas referenced : 
cubical-sigma_wf, 
squash_wf, 
true_wf, 
cubical-type_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
path-type_wf, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-ap-term_wf, 
cubical-term_wf, 
cubical_set_wf, 
csm-cubical-id-fun, 
cubical-app_wf_fun, 
cc-snd_wf, 
equal_wf, 
istype-universe, 
cubical-app-id-fun
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
applyEquality, 
thin, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
instantiate, 
sqequalRule, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
hyp_replacement, 
universeEquality
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}T:\{X  \mvdash{}  \_\}.    \mforall{}[u:\{X  \mvdash{}  \_:T\}].  (X  \mvdash{}  Fiber(cubical-id-fun(X);u)  =  \mSigma{}  T  (Path\_(T)p  (u)p  q))
Date html generated:
2020_05_20-PM-03_27_34
Last ObjectModification:
2020_04_07-PM-05_21_46
Theory : cubical!type!theory
Home
Index