Nuprl Lemma : cubical-isect-subset-adjoin2

[X,phi,A,B,C,D:Top].  (⋂~ ⋂B)


Proof




Definitions occuring in Statement :  cubical-isect: B context-subset: Gamma, phi cube-context-adjoin: X.A uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  cube-context-adjoin: X.A cubical-isect: B context-subset: Gamma, phi all: x:A. B[x] member: t ∈ T top: Top cubical-isect-family: cubical-isect-family(X;A;B;I;a) uall: [x:A]. B[x]
Lemmas referenced :  I_cube_pair_redex_lemma cube_set_restriction_pair_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis because_Cache isect_memberFormation sqequalAxiom isectElimination hypothesisEquality

Latex:
\mforall{}[X,phi,A,B,C,D:Top].    (\mcap{}A  B  \msim{}  \mcap{}A  B)



Date html generated: 2017_01_10-PM-00_27_36
Last ObjectModification: 2017_01_06-PM-02_57_51

Theory : cubical!type!theory


Home Index