Nuprl Lemma : cubical-it-unique
∀[X:j⊢]. ∀[t:{X ⊢ _:1}].  (t = * ∈ {X ⊢ _:1})
Proof
Definitions occuring in Statement : 
cubical-it: *
, 
cubical-unit: 1
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cubical-unit: 1
, 
presheaf-unit: 1
, 
discrete-cubical-type: discr(T)
, 
discrete-presheaf-type: discr(T)
, 
cubical-it: *
, 
presheaf-it: *
, 
discrete-cubical-term: discr(t)
, 
discrete-presheaf-term: discr(t)
Lemmas referenced : 
presheaf-it-unique, 
cube-cat_wf, 
cubical-term-sq-presheaf-term
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:1\}].    (t  =  *)
Date html generated:
2020_05_20-PM-02_32_40
Last ObjectModification:
2020_04_03-PM-08_42_59
Theory : cubical!type!theory
Home
Index