Nuprl Lemma : presheaf-it-unique

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[t:{X ⊢ _:1}].  (t * ∈ {X ⊢ _:1})


Proof




Definitions occuring in Statement :  presheaf-it: * presheaf-unit: 1 presheaf-term: {X ⊢ _:A} ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-unit: 1 discrete-presheaf-type: discr(T) all: x:A. B[x] presheaf-term-at: u(a) subtype_rel: A ⊆B presheaf-type-at: A(a) pi1: fst(t) unit: Unit uimplies: supposing a
Lemmas referenced :  presheaf_type_at_pair_lemma equal-unit presheaf-term-at_wf presheaf-unit_wf subtype_rel_self unit_wf2 presheaf-it_wf small-category-cumulativity-2 ps_context_cumulativity2 I_set_wf cat-ob_wf presheaf-term-equal presheaf-term_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis isectElimination hypothesisEquality applyEquality instantiate equalityTransitivity equalitySymmetry independent_isectElimination universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[t:\{X  \mvdash{}  \_:1\}].    (t  =  *)



Date html generated: 2020_05_20-PM-01_34_48
Last ObjectModification: 2020_04_02-PM-06_34_13

Theory : presheaf!models!of!type!theory


Home Index