Nuprl Lemma : cubical-sigma-p-p
∀X:j⊢. ∀T,A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀C:{X.T ⊢ _}.  (((Σ A B)p)p = Σ ((A)p)p (B)(p o p o p;q) ∈ {X.T.C ⊢ _})
Proof
Definitions occuring in Statement : 
cubical-sigma: Σ A B
, 
csm-adjoin: (s;u)
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
csm-comp: G o F
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
cube-context-adjoin: X.A
, 
psc-adjoin: X.A
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cubical-type-at: A(a)
, 
presheaf-type-at: A(a)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
, 
cubical-type-ap-morph: (u a f)
, 
presheaf-type-ap-morph: (u a f)
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
cubical-sigma: Σ A B
, 
presheaf-sigma: Σ A B
, 
cc-adjoin-cube: (v;u)
, 
psc-adjoin-set: (v;u)
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
cc-fst: p
, 
psc-fst: p
, 
csm-adjoin: (s;u)
, 
pscm-adjoin: (s;u)
, 
csm-comp: G o F
, 
pscm-comp: G o F
, 
cc-snd: q
, 
psc-snd: q
Lemmas referenced : 
presheaf-sigma-p-p, 
cube-cat_wf, 
cubical-type-sq-presheaf-type
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
isectElimination, 
Error :memTop
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}T,A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.  \mforall{}C:\{X.T  \mvdash{}  \_\}.    (((\mSigma{}  A  B)p)p  =  \mSigma{}  ((A)p)p  (B)(p  o  p  o  p;q))
Date html generated:
2020_05_20-PM-02_26_44
Last ObjectModification:
2020_04_03-PM-08_37_03
Theory : cubical!type!theory
Home
Index