Nuprl Lemma : cubical-type-at_wf1

[X:j⊢]. ∀[A:{X ⊢_}]. ∀[I:fset(ℕ)]. ∀[a:X(I)].  (A(a) ∈ 𝕌{j})


Proof




Definitions occuring in Statement :  cubical-type-at: A(a) cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} cubical-type-at: A(a) pi1: fst(t)
Lemmas referenced :  I_cube_wf fset_wf nat_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType extract_by_obid isectElimination isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}j  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].    (A(a)  \mmember{}  \mBbbU{}\{j\})



Date html generated: 2020_05_20-PM-01_47_32
Last ObjectModification: 2020_04_03-PM-08_24_15

Theory : cubical!type!theory


Home Index