Nuprl Lemma : cubical-type-at_wf1
∀[X:j⊢]. ∀[A:{X ⊢j _}]. ∀[I:fset(ℕ)]. ∀[a:X(I)].  (A(a) ∈ 𝕌{j})
Proof
Definitions occuring in Statement : 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-type: {X ⊢ _}
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
Lemmas referenced : 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
extract_by_obid, 
isectElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}j  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].    (A(a)  \mmember{}  \mBbbU{}\{j\})
Date html generated:
2020_05_20-PM-01_47_32
Last ObjectModification:
2020_04_03-PM-08_24_15
Theory : cubical!type!theory
Home
Index