Nuprl Lemma : dM-to-FL-dM0
∀[I:fset(ℕ)]. (dM-to-FL(I;0) = 0 ∈ Point(face_lattice(I)))
Proof
Definitions occuring in Statement : 
dM-to-FL: dM-to-FL(I;z), 
face_lattice: face_lattice(I), 
dM0: 0, 
lattice-0: 0, 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
bdd-distributive-lattice: BoundedDistributiveLattice, 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
face-lattice: face-lattice(T;eq), 
face_lattice: face_lattice(I), 
it: ⋅, 
nil: [], 
empty-fset: {}, 
btrue: tt, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
free-dist-lattice: free-dist-lattice(T; eq), 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
bfalse: ff, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
record-update: r[x := v], 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
dM: dM(I), 
record-select: r.x, 
lattice-0: 0, 
list_accum: list_accum, 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
fset-image: f"(s), 
list_ind: list_ind, 
reduce: reduce(f;k;as), 
lattice-fset-join: \/(s), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
dM-to-FL: dM-to-FL(I;z), 
uall: ∀[x:A]. B[x], 
dM0: 0
Lemmas referenced : 
lattice-0_wf, 
face_lattice_wf, 
bdd-distributive-lattice_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
rename, 
setElimination, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
hypothesis, 
cut, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[I:fset(\mBbbN{})].  (dM-to-FL(I;0)  =  0)
Date html generated:
2016_05_18-PM-00_12_56
Last ObjectModification:
2016_04_18-PM-08_49_38
Theory : cubical!type!theory
Home
Index