Nuprl Lemma : dM-to-FL-dM0

[I:fset(ℕ)]. (dM-to-FL(I;0) 0 ∈ Point(face_lattice(I)))


Proof




Definitions occuring in Statement :  dM-to-FL: dM-to-FL(I;z) face_lattice: face_lattice(I) dM0: 0 lattice-0: 0 lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  bdd-distributive-lattice: BoundedDistributiveLattice subtype_rel: A ⊆B member: t ∈ T constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) face-lattice: face-lattice(T;eq) face_lattice: face_lattice(I) it: nil: [] empty-fset: {} btrue: tt mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice free-dist-lattice: free-dist-lattice(T; eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dM: dM(I) record-select: r.x lattice-0: 0 list_accum: list_accum f-union: f-union(domeq;rngeq;s;x.g[x]) fset-image: f"(s) list_ind: list_ind reduce: reduce(f;k;as) lattice-fset-join: \/(s) lattice-extend: lattice-extend(L;eq;eqL;f;ac) dM-to-FL: dM-to-FL(I;z) uall: [x:A]. B[x] dM0: 0
Lemmas referenced :  lattice-0_wf face_lattice_wf bdd-distributive-lattice_wf fset_wf nat_wf
Rules used in proof :  rename setElimination lambdaEquality applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution lemma_by_obid hypothesis cut isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[I:fset(\mBbbN{})].  (dM-to-FL(I;0)  =  0)



Date html generated: 2016_05_18-PM-00_12_56
Last ObjectModification: 2016_04_18-PM-08_49_38

Theory : cubical!type!theory


Home Index