Nuprl Lemma : discrete-pair_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[X:j⊢]. ∀[p:{X ⊢ _:Σ discr(A) discrete-family(A;a.B[a])}].
  (discrete-pair(p) ∈ {X ⊢ _:discr(a:A × B[a])})


Proof




Definitions occuring in Statement :  discrete-pair: discrete-pair(p) discrete-family: discrete-family(A;a.B[a]) discrete-cubical-type: discr(T) cubical-sigma: Σ B cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] discrete-pair: discrete-pair(p) cubical-term: {X ⊢ _:A} discrete-cubical-type: discr(T) all: x:A. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) csm-ap-type: (AF)s discrete-family: discrete-family(A;a.B[a]) pi2: snd(t) csm-ap: (s)x csm-id-adjoin: [u] csm-adjoin: (s;u) cubical-fst: p.1 cubical-term-at: u(a) implies:  Q csm-id: 1(X) prop: squash: T cubical-type-ap-morph: (u f) true: True
Lemmas referenced :  discrete-cubical-type_wf cubical_type_at_pair_lemma cubical-term-at_wf cubical-fst_wf discrete-family_wf subtype_rel_self csm-ap-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf cubical-snd_wf I_cube_wf fset_wf nat_wf cubical_type_ap_morph_pair_lemma names-hom_wf istype-cubical-type-at cube-set-restriction_wf cubical-type-ap-morph_wf cubical-term_wf cubical-sigma_wf cubical_set_wf istype-universe discrete-cubical-term-at-morph csm-ap-type-at equal_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality applyEquality dependent_set_memberEquality_alt sqequalRule dependent_functionElimination Error :memTop,  hypothesis lambdaEquality_alt dependent_pairEquality_alt because_Cache instantiate cumulativity universeIsType lambdaFormation_alt functionIsType equalityIstype equalityTransitivity equalitySymmetry inhabitedIsType universeEquality independent_functionElimination hyp_replacement setElimination rename imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[p:\{X  \mvdash{}  \_:\mSigma{}  discr(A)  discrete-family(A;a.B[a])\}].
    (discrete-pair(p)  \mmember{}  \{X  \mvdash{}  \_:discr(a:A  \mtimes{}  B[a])\})



Date html generated: 2020_05_20-PM-03_40_33
Last ObjectModification: 2020_04_06-PM-07_25_43

Theory : cubical!type!theory


Home Index