Nuprl Lemma : discrete-pathtype-uniform
∀[T:Type]. ∀[X,Z:j⊢]. ∀[s:Z j⟶ X]. ∀[pth:{Z ⊢ _:(Path(discr(T)))s}].
  (pth = refl(pth @ 0(𝕀)) ∈ {Z ⊢ _:(Path(discr(T)))s})
Proof
Definitions occuring in Statement : 
cubical-refl: refl(a), 
cubical-path-app: pth @ r, 
pathtype: Path(A), 
interval-0: 0(𝕀), 
discrete-cubical-type: discr(T), 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
squash: ↓T, 
all: ∀x:A. B[x], 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
prop: ℙ
Lemmas referenced : 
discrete-pathtype, 
cubical_set_cumulativity-i-j, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-type_wf, 
pathtype_wf, 
discrete-cubical-type_wf, 
equal_wf, 
cubical-type_wf, 
csm-pathtype, 
iff_weakening_equal, 
csm-discrete-cubical-type, 
squash_wf, 
true_wf, 
subtype_rel_self, 
cubical-term_wf, 
cube_set_map_wf, 
cubical_set_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
lambdaEquality_alt, 
imageElimination, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_functionElimination, 
Error :memTop, 
universeIsType, 
universeEquality, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[T:Type].  \mforall{}[X,Z:j\mvdash{}].  \mforall{}[s:Z  j{}\mrightarrow{}  X].  \mforall{}[pth:\{Z  \mvdash{}  \_:(Path(discr(T)))s\}].    (pth  =  refl(pth  @  0(\mBbbI{})))
Date html generated:
2020_05_20-PM-03_36_39
Last ObjectModification:
2020_04_06-PM-07_02_19
Theory : cubical!type!theory
Home
Index