Nuprl Lemma : equal-fiber-discrete

[B:Type]. ∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[f:{X ⊢ _:(A ⟶ discr(B))}]. ∀[z:{X ⊢ _:discr(B)}]. ∀[a,b:{X ⊢ _:Fiber(f;z)}].
  (a b ∈ {X ⊢ _:Fiber(f;z)} ⇐⇒ a.1 b.1 ∈ {X ⊢ _:A})


Proof




Definitions occuring in Statement :  cubical-fiber: Fiber(w;a) discrete-cubical-type: discr(T) cubical-fst: p.1 cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B cubical-path-app: pth r
Lemmas referenced :  equal-fiber-when-discrete discrete-cubical-type_wf cubical-term_wf pathtype_wf cubical-fiber_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-fun_wf cubical-type_wf cubical_set_wf istype-universe discrete-pathtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination lambdaFormation_alt universeIsType instantiate cumulativity inhabitedIsType applyEquality sqequalRule universeEquality

Latex:
\mforall{}[B:Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[f:\{X  \mvdash{}  \_:(A  {}\mrightarrow{}  discr(B))\}].  \mforall{}[z:\{X  \mvdash{}  \_:discr(B)\}].
\mforall{}[a,b:\{X  \mvdash{}  \_:Fiber(f;z)\}].
    (a  =  b  \mLeftarrow{}{}\mRightarrow{}  a.1  =  b.1)



Date html generated: 2020_05_20-PM-03_37_31
Last ObjectModification: 2020_04_07-PM-04_28_31

Theory : cubical!type!theory


Home Index