Nuprl Lemma : equal-fiber-discrete
∀[B:Type]. ∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[f:{X ⊢ _:(A ⟶ discr(B))}]. ∀[z:{X ⊢ _:discr(B)}]. ∀[a,b:{X ⊢ _:Fiber(f;z)}].
  (a = b ∈ {X ⊢ _:Fiber(f;z)} 
⇐⇒ a.1 = b.1 ∈ {X ⊢ _:A})
Proof
Definitions occuring in Statement : 
cubical-fiber: Fiber(w;a)
, 
discrete-cubical-type: discr(T)
, 
cubical-fst: p.1
, 
cubical-fun: (A ⟶ B)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
cubical-path-app: pth @ r
Lemmas referenced : 
equal-fiber-when-discrete, 
discrete-cubical-type_wf, 
cubical-term_wf, 
pathtype_wf, 
cubical-fiber_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-fun_wf, 
cubical-type_wf, 
cubical_set_wf, 
istype-universe, 
discrete-pathtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
lambdaFormation_alt, 
universeIsType, 
instantiate, 
cumulativity, 
inhabitedIsType, 
applyEquality, 
sqequalRule, 
universeEquality
Latex:
\mforall{}[B:Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[f:\{X  \mvdash{}  \_:(A  {}\mrightarrow{}  discr(B))\}].  \mforall{}[z:\{X  \mvdash{}  \_:discr(B)\}].
\mforall{}[a,b:\{X  \mvdash{}  \_:Fiber(f;z)\}].
    (a  =  b  \mLeftarrow{}{}\mRightarrow{}  a.1  =  b.1)
Date html generated:
2020_05_20-PM-03_37_31
Last ObjectModification:
2020_04_07-PM-04_28_31
Theory : cubical!type!theory
Home
Index