Nuprl Lemma : equiv-bijection_wf

[A,B:Type]. ∀[e:{() ⊢ _:Equiv(discr(A);discr(B))}].  (equiv-bijection(e) ∈ A ⟶ B)


Proof




Definitions occuring in Statement :  equiv-bijection: equiv-bijection(e) cubical-equiv: Equiv(T;A) discrete-cubical-type: discr(T) cubical-term: {X ⊢ _:A} trivial-cube-set: () uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  discrete-cubical-type: discr(T) cubical-type-at: A(a) prop: trivial-cube-set: () pi1: fst(t) functor-ob: ob(F) I_cube: A(I) unit: Unit subtype_rel: A ⊆B equiv-bijection: equiv-bijection(e) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  cubical-equiv_wf cubical-term_wf equal-wf-base subtype_rel_self it_wf nat_wf empty-fset_wf equiv-fun_wf discrete-fun_wf discrete-cubical-type_wf trivial-cube-set_wf cubical-term-at_wf
Rules used in proof :  universeEquality isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality because_Cache baseClosed intEquality applyEquality hypothesisEquality cumulativity functionEquality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A,B:Type].  \mforall{}[e:\{()  \mvdash{}  \_:Equiv(discr(A);discr(B))\}].    (equiv-bijection(e)  \mmember{}  A  {}\mrightarrow{}  B)



Date html generated: 2017_02_21-AM-10_51_50
Last ObjectModification: 2017_02_13-AM-11_54_03

Theory : cubical!type!theory


Home Index