Nuprl Lemma : equiv-bijection_wf
∀[A,B:Type]. ∀[e:{() ⊢ _:Equiv(discr(A);discr(B))}].  (equiv-bijection(e) ∈ A ⟶ B)
Proof
Definitions occuring in Statement : 
equiv-bijection: equiv-bijection(e)
, 
cubical-equiv: Equiv(T;A)
, 
discrete-cubical-type: discr(T)
, 
cubical-term: {X ⊢ _:A}
, 
trivial-cube-set: ()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
discrete-cubical-type: discr(T)
, 
cubical-type-at: A(a)
, 
prop: ℙ
, 
trivial-cube-set: ()
, 
pi1: fst(t)
, 
functor-ob: ob(F)
, 
I_cube: A(I)
, 
unit: Unit
, 
subtype_rel: A ⊆r B
, 
equiv-bijection: equiv-bijection(e)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
cubical-equiv_wf, 
cubical-term_wf, 
equal-wf-base, 
subtype_rel_self, 
it_wf, 
nat_wf, 
empty-fset_wf, 
equiv-fun_wf, 
discrete-fun_wf, 
discrete-cubical-type_wf, 
trivial-cube-set_wf, 
cubical-term-at_wf
Rules used in proof : 
universeEquality, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
baseClosed, 
intEquality, 
applyEquality, 
hypothesisEquality, 
cumulativity, 
functionEquality, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A,B:Type].  \mforall{}[e:\{()  \mvdash{}  \_:Equiv(discr(A);discr(B))\}].    (equiv-bijection(e)  \mmember{}  A  {}\mrightarrow{}  B)
Date html generated:
2017_02_21-AM-10_51_50
Last ObjectModification:
2017_02_13-AM-11_54_03
Theory : cubical!type!theory
Home
Index