Nuprl Lemma : discrete-fun_wf

[A,B:Type]. ∀[X:j⊢]. ∀[f:{X ⊢ _:(discr(A) ⟶ discr(B))}].  (discrete-fun(f) ∈ {X ⊢ _:discr(A ⟶ B)})


Proof




Definitions occuring in Statement :  discrete-fun: discrete-fun(f) discrete-cubical-type: discr(T) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T discrete-fun: discrete-fun(f) cubical-term: {X ⊢ _:A} discrete-cubical-type: discr(T) all: x:A. B[x] subtype_rel: A ⊆B cubical-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) squash: T prop: true: True implies:  Q uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  cubical-term_wf cubical-fun_wf discrete-cubical-type_wf cubical_set_wf istype-universe cubical_type_at_pair_lemma nh-id_wf I_cube_wf fset_wf nat_wf cubical_type_ap_morph_pair_lemma names-hom_wf equal_wf squash_wf true_wf nh-id-left subtype_rel_self iff_weakening_equal nh-id-right istype-cubical-type-at cube-set-restriction_wf cubical-type-ap-morph_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType thin instantiate extract_by_obid isectElimination hypothesisEquality cumulativity isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeEquality dependent_set_memberEquality_alt dependent_functionElimination Error :memTop,  lambdaEquality_alt applyEquality because_Cache setElimination rename lambdaFormation_alt functionExtensionality applyLambdaEquality imageMemberEquality baseClosed imageElimination hyp_replacement natural_numberEquality equalityIstype independent_functionElimination independent_isectElimination productElimination functionIsType functionEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[f:\{X  \mvdash{}  \_:(discr(A)  {}\mrightarrow{}  discr(B))\}].
    (discrete-fun(f)  \mmember{}  \{X  \mvdash{}  \_:discr(A  {}\mrightarrow{}  B)\})



Date html generated: 2020_05_20-PM-03_37_59
Last ObjectModification: 2020_04_07-PM-04_28_44

Theory : cubical!type!theory


Home Index