Nuprl Lemma : discrete-fun_wf
∀[A,B:Type]. ∀[X:j⊢]. ∀[f:{X ⊢ _:(discr(A) ⟶ discr(B))}].  (discrete-fun(f) ∈ {X ⊢ _:discr(A ⟶ B)})
Proof
Definitions occuring in Statement : 
discrete-fun: discrete-fun(f), 
discrete-cubical-type: discr(T), 
cubical-fun: (A ⟶ B), 
cubical-term: {X ⊢ _:A}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
discrete-fun: discrete-fun(f), 
cubical-term: {X ⊢ _:A}, 
discrete-cubical-type: discr(T), 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
cubical-fun: (A ⟶ B), 
cubical-fun-family: cubical-fun-family(X; A; B; I; a), 
squash: ↓T, 
prop: ℙ, 
true: True, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
cubical-term_wf, 
cubical-fun_wf, 
discrete-cubical-type_wf, 
cubical_set_wf, 
istype-universe, 
cubical_type_at_pair_lemma, 
nh-id_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical_type_ap_morph_pair_lemma, 
names-hom_wf, 
equal_wf, 
squash_wf, 
true_wf, 
nh-id-left, 
subtype_rel_self, 
iff_weakening_equal, 
nh-id-right, 
istype-cubical-type-at, 
cube-set-restriction_wf, 
cubical-type-ap-morph_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
thin, 
instantiate, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
cumulativity, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
universeEquality, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
Error :memTop, 
lambdaEquality_alt, 
applyEquality, 
because_Cache, 
setElimination, 
rename, 
lambdaFormation_alt, 
functionExtensionality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
hyp_replacement, 
natural_numberEquality, 
equalityIstype, 
independent_functionElimination, 
independent_isectElimination, 
productElimination, 
functionIsType, 
functionEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[f:\{X  \mvdash{}  \_:(discr(A)  {}\mrightarrow{}  discr(B))\}].
    (discrete-fun(f)  \mmember{}  \{X  \mvdash{}  \_:discr(A  {}\mrightarrow{}  B)\})
Date html generated:
2020_05_20-PM-03_37_59
Last ObjectModification:
2020_04_07-PM-04_28_44
Theory : cubical!type!theory
Home
Index