Nuprl Lemma : equivTerm_wf

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}].  (equivTerm(G;A;B) ∈ {G ⊢ _:c𝕌})


Proof




Definitions occuring in Statement :  equivTerm: equivTerm(G;A;B) cubical-universe: c𝕌 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equivTerm: equivTerm(G;A;B) all: x:A. B[x]
Lemmas referenced :  universe-encode_wf cubical-equiv_wf universe-decode_wf equiv-comp_wf universe-comp-op_wf istype-cubical-universe-term cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies dependent_functionElimination universeIsType instantiate

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].    (equivTerm(G;A;B)  \mmember{}  \{G  \mvdash{}  \_:c\mBbbU{}\})



Date html generated: 2020_05_20-PM-07_33_34
Last ObjectModification: 2020_04_28-PM-11_13_52

Theory : cubical!type!theory


Home Index