Nuprl Lemma : universe-encode_wf
∀[G:j⊢]. ∀[T:{G ⊢ _}]. ∀[cT:G ⊢ CompOp(T)].  (encode(T;cT) ∈ {G ⊢ _:c𝕌})
Proof
Definitions occuring in Statement : 
universe-encode: encode(T;cT), 
cubical-universe: c𝕌, 
composition-op: Gamma ⊢ CompOp(A), 
cubical-term: {X ⊢ _:A}, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical-term: {X ⊢ _:A}, 
universe-encode: encode(T;cT), 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
cubical-universe: c𝕌, 
closed-cubical-universe: cc𝕌, 
closed-type-to-type: closed-type-to-type(T), 
csm-fibrant-type: csm-fibrant-type(G;H;s;FT), 
squash: ↓T, 
prop: ℙ, 
names-hom: I ⟶ J, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
formal-cube: formal-cube(I), 
true: True, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
csm-composition: (comp)sigma, 
csm-comp: G o F, 
csm-ap: (s)x, 
compose: f o g, 
cubical-type: {X ⊢ _}, 
csm-ap-type: (AF)s
Lemmas referenced : 
cubical-universe_wf, 
cubical-universe-at, 
I_cube_wf, 
fset_wf, 
nat_wf, 
names-hom_wf, 
istype-cubical-type-at, 
cube-set-restriction_wf, 
cubical-type-ap-morph_wf, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf, 
csm-ap-type_wf, 
formal-cube_wf1, 
context-map_wf, 
csm-composition_wf, 
cubical_type_ap_morph_pair_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
csm-ap-comp-type, 
subtype_rel_self, 
iff_weakening_equal, 
cube_set_map_wf, 
context-map-comp2, 
subtype_rel-equal, 
csm-comp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality_alt, 
functionExtensionality, 
sqequalRule, 
Error :memTop, 
lambdaFormation_alt, 
universeIsType, 
because_Cache, 
functionIsType, 
equalityIstype, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
dependent_pairEquality_alt, 
dependent_functionElimination, 
lambdaEquality_alt, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
inhabitedIsType, 
setElimination, 
rename
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[T:\{G  \mvdash{}  \_\}].  \mforall{}[cT:G  \mvdash{}  CompOp(T)].    (encode(T;cT)  \mmember{}  \{G  \mvdash{}  \_:c\mBbbU{}\})
Date html generated:
2020_05_20-PM-07_10_00
Last ObjectModification:
2020_04_25-PM-08_16_46
Theory : cubical!type!theory
Home
Index