Nuprl Lemma : face-0_wf
∀[Gamma:j⊢]. (0(𝔽) ∈ {Gamma ⊢ _:𝔽})
Proof
Definitions occuring in Statement : 
face-0: 0(𝔽), 
face-type: 𝔽, 
cubical-term: {X ⊢ _:A}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical-term: {X ⊢ _:A}, 
face-0: 0(𝔽), 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
cubical-type-at: A(a), 
pi1: fst(t), 
face-type: 𝔽, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
face-presheaf: 𝔽, 
all: ∀x:A. B[x], 
cubical-type-ap-morph: (u a f), 
pi2: snd(t), 
cube-set-restriction: f(s), 
fl-morph: <f>, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1), 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
lattice-0: 0, 
empty-fset: {}, 
nil: [], 
it: ⋅
Lemmas referenced : 
lattice-0_wf, 
face_lattice_wf, 
subtype_rel_self, 
cubical-type-at_wf_face-type, 
I_cube_wf, 
fset_wf, 
nat_wf, 
names-hom_wf, 
istype-cubical-type-at, 
cube-set-restriction_wf, 
face-type_wf, 
cubical-type-ap-morph_wf, 
cubical_set_wf, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
Error :memTop, 
universeIsType, 
lambdaFormation_alt, 
because_Cache, 
functionIsType, 
equalityIstype, 
instantiate, 
axiomEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  (0(\mBbbF{})  \mmember{}  \{Gamma  \mvdash{}  \_:\mBbbF{}\})
Date html generated:
2020_05_20-PM-02_40_29
Last ObjectModification:
2020_04_04-PM-04_48_24
Theory : cubical!type!theory
Home
Index