Nuprl Lemma : face-1-implies-subset
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}].  sub_cubical_set{j:l}(Gamma; Gamma, phi) supposing Gamma ⊢ (1(𝔽) 
⇒ phi)
Proof
Definitions occuring in Statement : 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
context-subset: Gamma, phi
, 
face-1: 1(𝔽)
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
sub_cubical_set: Y ⊆ X
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
sub_cubical_set: Y ⊆ X
, 
prop: ℙ
Lemmas referenced : 
sub_cubical_set_transitivity, 
context-subset_wf, 
face-1_wf, 
context-1-subset, 
face-term-implies_wf, 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf, 
face-term-implies-subset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
instantiate, 
independent_pairFormation, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
    sub\_cubical\_set\{j:l\}(Gamma;  Gamma,  phi)  supposing  Gamma  \mvdash{}  (1(\mBbbF{})  {}\mRightarrow{}  phi)
Date html generated:
2020_05_20-PM-02_54_07
Last ObjectModification:
2020_04_04-PM-05_08_31
Theory : cubical!type!theory
Home
Index